Toán 11, giải toán lớp 11 chân trời sáng tạo
Bài 2. Giá trị lượng giác của một góc lượng giác Toán 1..
Lý thuyết Giá trị lượng giác của một góc lượng giác - SGK Toán 11 Chân trời sáng tạo>
1. Giá trị lượng giác của góc lượng giác
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh
1. Giá trị lượng giác của góc lượng giác

- Trên đường tròn, lấy điểm \(M(x_M;y_M)\) như hình vẽ. Khi đó:
\(x = \cos \alpha \);
\(y = \sin \alpha \);
\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{y}{x}\) \(\left( {x \ne 0} \right)\);
\(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{x}{y}\) \(\left( {y \ne 0} \right)\).
- Các giá trị \(\sin \alpha \), \(\cos \alpha \), \(\tan \alpha \), \(\cot \alpha \) được gọi là các giá trị lượng giác của góc lượng giác \(\alpha \).
* Chú ý:
a) Trục tung là trục sin, trục hoành là trục côsin.
Trục As có gốc ở điểm A(1;0) và song song với trục sin là trục tang.
Trục Bt có gốc ở điểm B(0;1) và song song với trục cosin gọi là trục cotang.

b) \(\sin \alpha \) và \(\cos \alpha \) xác định với mọi \(\alpha \in \mathbb{R}\).
\(\tan \alpha \) xác định với các góc \(\alpha \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\).
\(\cot \alpha \) xác định với các góc \(\alpha \ne k\pi ,k \in \mathbb{Z}\).
c) Với mọi góc lượng giác \(\alpha \) và số nguyên k, ta có:
\(\begin{array}{l}\sin \left( {\alpha + k2\pi } \right) = \sin \alpha \\\cos \left( {\alpha + k2\pi } \right) = \cos \alpha \\\tan \left( {\alpha + k\pi } \right) = \tan \alpha \\\cot \left( {\alpha + k\pi } \right) = \cot \alpha \end{array}\)
d) Bảng các giá trị lượng giác đặc biệt:


2. Tính giá trị lượng giác của một góc bằng máy tính cầm tay
- Lần lượt ấn các phím SHIFT \( \to \) MENU \( \to \) 2:
Để chọn đơn vị độ: ấn phím 1 (Degree).
Để chọn đơn vị radian: ấn phím 2 (Radian).
- Ấn các phím MENU 1 để vào chế độ tính toán.
3. Hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác
\(\begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\left( {\alpha \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right)\\1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}\left( {\alpha \ne k\pi ,k \in \mathbb{Z}} \right)\\\tan \alpha .\cot \alpha = 1\left( {\alpha \ne \frac{{k\pi }}{2},k \in \mathbb{Z}} \right)\end{array}\)
4. Giá trị lượng giác của các góc lượng giác có liên quan đặc biệt
- Hai góc đối nhau \(\alpha \) và \( - \alpha \)
\(\begin{array}{l}\sin \left( { - \alpha } \right) = - \sin \alpha \\\cos \left( { - \alpha } \right) = \cos \alpha \\\tan \left( { - \alpha } \right) = - \tan \alpha \\\cot \left( { - \alpha } \right) = - \cot \alpha \end{array}\)
- Hai góc bù nhau \(\alpha \) và \(\pi -\alpha \)
\(\begin{array}{l}\sin \left( {\pi - \alpha } \right) = \sin \alpha \\\cos \left( {\pi - \alpha } \right) = - \cos \alpha \\\tan \left( {\pi - \alpha } \right) = - \tan \alpha \\\cot \left( {\pi - \alpha } \right) = - \cot \alpha \end{array}\)
- Hai góc phụ nhau \(\alpha \) và \(\frac{\pi }{2}-\alpha \)
\(\begin{array}{l}\sin \left( {\frac{\pi }{2} - \alpha } \right) = c{\rm{os}}\alpha \\\cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha \\\tan \left( {\frac{\pi }{2} - \alpha } \right) = \cot \alpha \\\cot \left( {\frac{\pi }{2} - \alpha } \right) = \tan \alpha \end{array}\)
- Hai góc hơn kém \(\pi \) và \(\pi +\alpha \)
\(\begin{array}{l}\sin \left( {\pi + \alpha } \right) = - \sin \alpha \\\cos \left( {\pi + \alpha } \right) = - \cos \alpha \\\tan \left( {\pi + \alpha } \right) = \tan \alpha \\\cot \left( {\pi + \alpha } \right) = \cot \alpha \end{array}\)

- Giải câu hỏi mở đầu trang 13 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải mục 1 trang 13, 14, 15 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải mục 2 trang 16 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải mục 3 trang 16, 17 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải mục 4 trang 17, 18, 19 GK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải câu hỏi mở đầu trang 136 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 130 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 121 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 113 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 107 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 136 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 130 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 121 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 113 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Giải câu hỏi mở đầu trang 107 SGK Toán 11 tập 1 - Chân trời sáng tạo




