Giải câu hỏi trắc nghiệm trang 8, 9 vở thực hành Toán 7 tập 2>
Từ (frac{a}{b} = frac{c}{d}) ta suy ra A. (frac{a}{b} = frac{{a - c}}{{d - b}}). B. (frac{a}{b} = frac{{c - a}}{{b - d}}). C. (frac{a}{b} = frac{{a + c}}{{b + d}}). D. (frac{a}{b} = frac{{ac}}{{bd}}).
Chọn phương án đúng trong mỗi câu sau:
Câu 1
Trả lời Câu 1 trang 8 Vở thực hành Toán 7
Từ \(\frac{a}{b} = \frac{c}{d}\) ta suy ra
A. \(\frac{a}{b} = \frac{{a - c}}{{d - b}}\).
B. \(\frac{a}{b} = \frac{{c - a}}{{b - d}}\).
C. \(\frac{a}{b} = \frac{{a + c}}{{b + d}}\).
D. \(\frac{a}{b} = \frac{{ac}}{{bd}}\).
Phương pháp giải:
Từ \(\frac{a}{b} = \frac{c}{d}\) ta suy ra \(\frac{a}{b} = \frac{c}{d} = \frac{{a + c}}{{b + d}} = \frac{{a - c}}{{b - d}}\).
Lời giải chi tiết:
Từ \(\frac{a}{b} = \frac{c}{d}\) ta suy ra \(\frac{a}{b} = \frac{c}{d} = \frac{{a + c}}{{b + d}} = \frac{{a - c}}{{b - d}}\) nên C là đáp án đúng.
Chọn C
Câu 2
Trả lời Câu 2 trang 8 Vở thực hành Toán 7
Nếu \(\frac{x}{3} = \frac{y}{5}\) và \(x + y = - 16\) thì
A. \(x = 3;y = 5\).
B. \(x = - 6;y = - 10\).
C. \(x = - 10;y = - 6\).
D. \(x = 6;y = - 22\).
Phương pháp giải:
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{{a + c}}{{b + d}}\).
Lời giải chi tiết:
Vì \(\frac{x}{3} = \frac{y}{5}\) nên \(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 16}}{8} = - 2\) (tính chất của dãy tỉ số bằng nhau).
Do đó, \(x = 3.\left( { - 2} \right) = - 6;y = 5.\left( { - 2} \right) = - 10\).
Chọn B
Câu 3
Trả lời Câu 3 trang 8 Vở thực hành Toán 7
Từ \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f}\) ta suy ra
A. \(\frac{a}{b} = \frac{{a + c - e}}{{b + d - f}}\).
B. \(\frac{a}{b} = \frac{{a + c - e}}{{b - d + f}}\).
C. \(\frac{a}{b} = \frac{{a - c + e}}{{b + d - f}}\).
D. \(\frac{a}{b} = \frac{{ace}}{{bdf}}\).
Phương pháp giải:
Từ \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f}\) ta suy ra \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c - e}}{{b + d - f}}\).
Lời giải chi tiết:
Từ \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f}\) ta suy ra \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a + c - e}}{{b + d - f}}\) nên đáp án A đúng.
Chọn A
Câu 4
Trả lời Câu 4 trang 9 Vở thực hành Toán 7
Biết rằng x, y, z tỉ lệ với 3, 4, 5. Khi đó
A. \(3x = 4y = 5z\).
B. \(x:y:z = 5:4:3\).
C. \(5x = 4y = 3z\).
D. \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).
Phương pháp giải:
Nếu x, y, z tỉ lệ với a, b, c nghĩa là ta có \(\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\).
Lời giải chi tiết:
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\).
Chọn D
- Giải bài 1 (6.7) trang 9 vở thực hành Toán 7 tập 2
- Giải bài 2 (6.8) trang 9 vở thực hành Toán 7 tập 2
- Giải bài 3 trang 9 vở thực hành Toán 7 tập 2
- Giải bài 4 (6.9) trang 10 vở thực hành Toán 7 tập 2
- Giải bài 5 (6.10) trang 10 vở thực hành Toán 7 tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay