Giải bài tập 3 trang 82 SGK Toán 9 tập 1 - Chân trời sáng tạo


Cho tam giác ABC có hai đường cao BB’ và CC’. Gọi O là trung điểm BC. a) Chứng minh đường tròn tâm O bán kính OB’ đi qua B, C, C’; b) So sánh độ dài hai đoạn thẳng BC và B’C’.

Đề bài

Cho tam giác ABC có hai đường cao BB’ và CC’. Gọi O là trung điểm BC.

a) Chứng minh đường tròn tâm O bán kính OB’ đi qua B, C, C’;

b) So sánh độ dài hai đoạn thẳng BC và B’C’.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Đọc kĩ dữ liệu đề bài để vẽ hình

- Áp dụng điểm cách đều ba đỉnh của một tam giác vuông là trung điểm của cạnh huyền của tam giác đó để chứng minh.

- Trong các dây của một đường tròn, đường kính là dây có độ dài lớn nhất để so sánh hai dây cung.

Lời giải chi tiết


a) Xét tam giác BB’C vuông tại B’ có BC là cạnh huyền, O là trung điểm của BC

Suy ra O cách đều ba điểm B, B’, C hay OB = OB’ = OC.

nên đường tròn tâm O bán kính OB’ đi qua B, C.

Xét tam giác BCC’ vuông tại C’ có BC là cạnh huyền, O là trung điểm của BC

Suy ra O cách đều ba điểm B, C, C’ hay OB = OC = OC’.

Vậy đường tròn tâm O bán kính OB’ đi qua B, C, C’.

b) Xét đường tròn tâm O, bán kính OB’, ta có:

BC > B’C’ (do dây cung BC đi qua tâm O; B’C’ không đi qua tâm O).


Bình chọn:
4.1 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Chân trời sáng tạo - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí