Giải Bài 9 trang 22 SGK Toán 8 tập 1 – Chân trời sáng tạo


a) Cho (x + y = 12) và (xy = 35). Tính ({left( {x - y} right)^2}) b) Cho (x - y = 8) và (xy = 20). Tính ({left( {x + y} right)^2}) c) Cho (x + y = 5) và (xy = 6). Tính ({x^3} + {y^3}) d) Cho (x - y = 3) và (xy = 40). Tính ({x^3} - {y^3})

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

a) Cho \(x + y = 12\) và \(xy = 35\). Tính \({\left( {x - y} \right)^2}\)

b) Cho \(x - y = 8\) và \(xy = 20\). Tính \({\left( {x + y} \right)^2}\)

c) Cho \(x + y = 5\) và \(xy = 6\). Tính \({x^3} + {y^3}\)

d) Cho \(x - y = 3\) và \(xy = 40\). Tính \({x^3} - {y^3}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Áp dụng hằng đẳng thức bình phương của một hiệu và bình phương của một tổng

b) Áp dụng hằng đẳng thức bình phương của một tổng

c) Áp dụng hằng đẳng thức tổng của hai lập phương

d) Áp dụng hằng đẳng thức hiệu của hai lập phương

Lời giải chi tiết

a) Ta có:

\({\left( {x - y} \right)^2} = {x^2} - 2xy + {y^2} = {x^2} + {y^2} - 2xy \\ = {x^2} + {y^2} + 2xy - 4xy  = {\left( {x + y} \right)^2} - 4xy\)

Thay \(x + y = 12\) và \(xy = 35\) vào biểu thức trên ta có:

\({12^2} - 4.35 = 144 - 140 = 4\)

Vậy \({\left( {x - y} \right)^2} = 4\) khi \(x + y = 12\), \(xy = 35\)

b) Ta có:

\({\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2} = {x^2} + {y^2} + 2xy \\ = {x^2} + {y^2} - 2xy + 4xy = {\left( {x - y} \right)^2} + 4xy\)

Thay \(x - y = 8\); \(xy = 20\) vào biểu thức ta có:

\({8^2} + 4.20 = 64 + 80 = 144\)

Vậy \({\left( {x + y} \right)^2} = 44\) khi \(x - y = 8\); \(xy = 20\)

c) Ta có:

\({x^3} + {y^3} = {\left( {x + y} \right)^3} - 3{x^2}y - 3x{y^2} \\ = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right)\)

Thay \(x + y = 5\); \(xy = 6\) vào biểu thức ta có:

\({5^3} - 3.6.5 = 125 - 90 = 35\)

Vậy \({x^3} + {y^3} = 35\) khi \(x + y = 5\); \(xy = 6\)

d) Ta có:

\({x^3} - {y^3} = {\left( {x - y} \right)^3} + 3{x^2}y - 3x{y^2} \\ = {\left( {x - y} \right)^3} + 3xy\left( {x - y} \right)\)

Thay \(x - y = 3\); \(xy = 40\) vào biểu thức ta có:

\({3^3} + 3.40.3 = 27 + 360 = 387\)

Vậy \({x^3} - {y^3} = 387\) khi \(x - y = 3\); \(xy = 40\)


Bình chọn:
4.5 trên 27 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí