Bài 81 trang 18 SBT toán 9 tập 1


Giải bài 81 trang 18 sách bài tập toán 9. Rút gọn các biểu thức...

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn các biểu thức:

LG câu a

\( \displaystyle{{\sqrt a  + \sqrt b } \over {\sqrt a  - \sqrt b }} + {{\sqrt a  - \sqrt b } \over {\sqrt a  + \sqrt b }}\) với \(a \ge 0,b \ge 0\) và \(a \ne b\)

Phương pháp giải:

Áp dụng hằng đẳng thức:

\({(a - b)^2} = {a^2} - 2ab + {b^2}\)

\({(a + b)^2} = {a^2} + 2ab + {b^2}\)

Lời giải chi tiết:

Ta có: 

\( \displaystyle{{\sqrt a  + \sqrt b } \over {\sqrt a  - \sqrt b }} + {{\sqrt a  - \sqrt b } \over {\sqrt a  + \sqrt b }} \) \( \displaystyle= {{{{\left( {\sqrt a  + \sqrt b } \right)}^2} + {{\left( {\sqrt a  - \sqrt b } \right)}^2}} \over {\left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}}\) 

\( \displaystyle = {{a + 2\sqrt {ab}  + b + a - 2\sqrt {ab}  + b} \over {a - b}}\)

\( \displaystyle = {{2(a + b)} \over {a - b}}\) (với \(a \ge 0,b \ge 0\) và \( a \ne b\))

LG câu b

\( \displaystyle{{a - b} \over {\sqrt a  - \sqrt b }} - {{\sqrt {a^3} - \sqrt {{b^3}}  } \over {a - b}}\) với \(a \ge 0,b \ge 0\) và \(a \ne b\) 

Phương pháp giải:

Áp dụng hằng đẳng thức:

\(a^2-b^2=(a-b)(a+b)\)

Lời giải chi tiết:

Ta có: \( \displaystyle{{a - b} \over {\sqrt a  - \sqrt b }} -{{\sqrt {a^3} - \sqrt {{b^3}}  } \over {a - b}}\)

\( \displaystyle={{(a - b)(\sqrt a  + \sqrt b)} \over {(\sqrt a  - \sqrt b).(\sqrt a  + \sqrt b) }} \)\( \displaystyle-{{\sqrt {a^2.a} - \sqrt {{b^2.b}}  } \over {a - b}}\)

\( \displaystyle = {{(a - b)(\sqrt a  + \sqrt {b)} } \over {{{\left( {\sqrt a } \right)}^2} - {{\left( {\sqrt b } \right)}^2}}} - {{a\sqrt a  - b\sqrt b } \over {a - b}}\)

\( \displaystyle = {{a\sqrt a  + a\sqrt b  - b\sqrt a  - b\sqrt b } \over {a - b}} - {{a\sqrt a  - b\sqrt b } \over {a - b}}\)

\( \displaystyle = {{a\sqrt a  + a\sqrt b  - b\sqrt a  - b\sqrt b  - a\sqrt a  + b\sqrt b } \over {a - b}}\)

\( \displaystyle = {{a\sqrt b  - b\sqrt a } \over {a - b}}\) (với \(a \ge 0,b \ge 0\) và \(a \ne b\))

Chú ý: Ta cũng có thể biến đổi tiếp \( \displaystyle {{a\sqrt b  - b\sqrt a } \over {a - b}}\) như sau:

\( \displaystyle  {{a\sqrt b  - b\sqrt a } \over {a - b}}\)\( \displaystyle = {{\sqrt {a^2b}  - \sqrt {ab^2} } \over {(\sqrt a  - \sqrt b).(\sqrt a  + \sqrt b)}}\)

\( \displaystyle = {{\sqrt {ab} .( \sqrt {a}- \sqrt {b}) } \over {(\sqrt a  - \sqrt b).(\sqrt a  + \sqrt b)}}\)

\( \displaystyle = {{\sqrt {ab} } \over {\sqrt a  + \sqrt b}}\)

Loigiaihay.com


Bình chọn:
4.6 trên 32 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí