Giải bài 8 trang 68 sách bài tập toán 11 - Cánh diều>
Tính các giới hạn sau:
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Tính các giới hạn sau:
a) \(\lim \frac{{4n + 2}}{3}\)
b) \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}}\)
c) \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}}\)
d) \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn.
Lời giải chi tiết
a) Ta có \(\lim \left( {4n + 2} \right) = + \infty \), \(\lim 3 = 3\) nên \(\lim \frac{{4n + 2}}{3} = + \infty \)
b) Ta có \(\lim \frac{2}{n} = 0 \Rightarrow \lim \left( { - 5 + \frac{2}{n}} \right) = - 5\)
Mặt khác, \(\lim \left( {3n + 4} \right) = + \infty \). Suy ra \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}} = - \infty \)
c) Ta có \(\lim \frac{1}{{n + 1}} = 0 \Rightarrow \lim \left( { - 3 + \frac{1}{{n + 1}}} \right) = - 3\)
Mặt khác, \(\lim {5^n} = + \infty \), suy ra \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}} = 0\)
d) Ta có \(\lim {4^n} = + \infty \Rightarrow \lim \frac{5}{{{4^n}}} = 0\).
Như vậy \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right) = \lim 6 - \lim \frac{5}{{{4^n}}} = 6 - 0 = 6\).


Các bài khác cùng chuyên mục