Giải bài 7.2 trang 34 SGK Toán 10 – Kết nối tri thức>
Lập phương trình tổng quát của các trục tọa độ
Đề bài
Lập phương trình tổng quát của các trục tọa độ
Phương pháp giải - Xem chi tiết
Trục số \(Ox,Oy\) đi qua điểm O và có vectơ pháp tuyến lần lượt là \(\overrightarrow j = \left( {0;1} \right);\overrightarrow i = \left( {1;0} \right)\).
Lời giải chi tiết
Trục \({\rm{O}}y\) đi qua \(O\left( {0;0} \right)\) và nhận \(\overrightarrow i = \left( {1;0} \right)\) là vectơ pháp tuyến, do đó phương trình tổng quát của trục Ox là \(1.\left( {x - 0} \right) + 0.\left( {y - 0} \right) = 0 \Leftrightarrow x = 0\).
Trục \({\rm{O}}x\) đi qua \(O\left( {0;0} \right)\) và nhận \(\overrightarrow j = \left( {0;1} \right)\) là vectơ pháp tuyến, do đó phương trình tổng quát của trục Oy là \(0.\left( {x - 0} \right) + 1.\left( {y - 0} \right) = 0 \Leftrightarrow y = 0\).
- Giải bài 7.3 trang 34 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.4 trang 34 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.5 trang 34 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.6 trang 34 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.1 trang 34 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức