Giải bài 7 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo>
Cho tam giác ABC. Chứng minh rằng:
Đề bài
Cho tam giác ABC. Chứng minh rằng:
\(\cot A + \cot B + \cot C = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\)
Phương pháp giải - Xem chi tiết
Tính \(\cot A,\cot B,\cot C\)bằng cách: Áp dụng hệ quả của định lí sin và định lí cosin:
\(\sin A = \frac{a}{{2R}}\); \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
Lời giải chi tiết
Áp dụng hệ quả của định lí sin và định lí cosin, ta có:
\(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}}\)
và \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{a}{{2R}} = R.\frac{{{b^2} + {c^2} - {a^2}}}{{abc}}\)
Tương tự ta có: \(\cot B = R.\frac{{{a^2} + {c^2} - {b^2}}}{{abc}}\) và \(\cot C = R.\frac{{{a^2} + {b^2} - {c^2}}}{{abc}}\)
\(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{R}{{abc}}\left[ {\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - {c^2}} \right)} \right]\\ = \frac{R}{{abc}}\left( {2{b^2} + 2{c^2} + 2{a^2} - {a^2} - {c^2} - {b^2}} \right) = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\end{array}\)
- Giải bài 8 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 9 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 10 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 6 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 5 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo