Giải Bài 51 trang 56 sách bài tập toán 7 tập 1 - Cánh diều


Trong đợt chống dịch Covid-19, để hưởng ứng phong trào “ATM gạo”, ba quận I, II, III đã ủng hộ tổng cộng 120 tạ gạo. Số gạo ủng hộ của ba quận I, II, III tỉ lệ với ba số 9; 7; 8. Tính số gạo mỗi quận đã ủng hộ.

Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều

Toán - Văn - Anh - Khoa học tự nhiên...

Đề bài

Trong đợt chống dịch Covid-19, để hưởng ứng phong trào “ATM gạo”, ba quận I, II, III đã ủng hộ tổng cộng 120 tạ gạo. Số gạo ủng hộ của ba quận I, II, III tỉ lệ với ba số 9; 7; 8. Tính số gạo mỗi quận đã ủng hộ.

Phương pháp giải - Xem chi tiết

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{g} = \dfrac{{a + c + e}}{{b + d + g}} = \dfrac{{a - c - e}}{{b - d - g}} = \dfrac{{a - c + e}}{{b - d + g}}\) với các tỉ số đều có nghĩa.

Với dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{g} \Rightarrow a:b:e = c:d:g\).

Lời giải chi tiết

Gọi số gạo mà mỗi quận đã ủng hộ lần lượt là x, y, z (tạ) (x,y,z > 0).

Số gạo ủng hộ của ba quận I, II, III tỉ lệ với ba số 9; 7; 8 nên \(\dfrac{x}{9} = \dfrac{y}{7} = \dfrac{z}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{9} = \dfrac{y}{7} = \dfrac{z}{8} = \dfrac{{x + y + z}}{{9 + 7 + 8}} = \dfrac{{120}}{{24}} = 5\).

\(\Rightarrow x=9.5=45; y=7.5=35; z=8.5=40\)

Vậy số gạo mà quận I, II, III ủng hộ lần lượt là: 45 tạ, 35 tạ, 40 tạ.


Bình chọn:
4.3 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí