Giải bài 4 trang 9 SBT toán 10 - Chân trời sáng tạo


Dựa vào đồ thị của hàm số bậc hai được cho trong hình dưới đây, xét dấu của tam thức bậc hai tương ứng:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Dựa vào đồ thị của hàm số bậc hai được cho trong hình dưới đây, xét dấu của tam thức bậc hai tương ứng:

Lời giải chi tiết

a) \(f\left( x \right) > 0\) dương trên khoảng \(\left( { - \infty ; - 2,5} \right)\) và \(\left( {3; + \infty } \right)\)

   \(f\left( x \right) < 0\) âm trên khoảng \(\left( { - 2,5;3} \right)\)

b) \(g\left( x \right) > 0\) dương với mọi \(x \ne  - 1\)

c) \(h\left( x \right) < 0\) âm với mọi \(x \in \mathbb{R}\)


Bình chọn:
3.8 trên 4 phiếu
  • Giải bài 5 trang 9 SBT toán 10 - Chân trời sáng tạo

    Xét dấu của các tam thức bậc hai sau: a) \(f\left( x \right) = {x^2} - 5x + 4\) b) \(f\left( x \right) = - \frac{1}{3}{x^2} + 2x - 3\) c) \(f\left( x \right) = 3{x^2} + 6x + 4\)

  • Giải bài 6 trang 9 SBT toán 10 - Chân trời sáng tạo

    Tìm các giá trị của tham số m để: a) \(f\left( x \right) = \left( {m + 1} \right){x^2} + 5x + 2\) là tam thức bậc hai không đổi dấu trên \(\mathbb{R}\)

  • Giải bài 7 trang 10 SBT toán 10 - Chân trời sáng tạo

    Chứng minh rằng a) \(2{x^2} + \sqrt 3 x + 1 > 0\) với mọi \(x \in \mathbb{R}\) b) \({x^2} + x + \frac{1}{4} \ge 0\) với mọi \(x \in \mathbb{R}\) c) \( - {x^2} < - 2x + 3\) với mọi \(x \in \mathbb{R}\)

  • Giải bài 8 trang 10 SBT toán 10 - Chân trời sáng tạo

    Xác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\) trong mỗi trường hợp sau: a) Đồ thị của hàm số \(y = f\left( x \right)\) đi qua ba điểm có tọa độ là \(\left( { - 1; - 4} \right),\left( {0;3} \right)\) và \(\left( {1; - 14} \right)\)

  • Giải bài 3 trang 9 SBT toán 10 - Chân trời sáng tạo

    Tìm các giá trị của tham số m để: a) \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất b) \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt c) \(f\left( x \right) = m{x^2} + \left( {m + 2} \right)x + 1\) là một tam thức bậc hai vô nghiệm

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!