Giải bài 13 trang 74 sách bài tập toán 11 - Cánh diều


Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0},b} \right)\). Phát biểu nào sau đây là đúng?

Đề bài

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0},b} \right)\). Phát biểu nào sau đây là đúng?

A.   Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\), ta có \(f\left( {{x_n}} \right) \to {\rm{L}}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).

B.   Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \to {x_0}\), ta có\(f\left( {{x_n}} \right) \to {\rm{L}}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).

C.   Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_0} < {x_n} < b\) và \({x_n} \to L\), ta có \(f\left( {{x_n}} \right) \to {x_0}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).

D.   Nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} < {x_0}\) và \({x_n} \to {x_0}\), ta có \(f\left( {{x_n}} \right) \to {\rm{L}}\) thì \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).

Phương pháp giải - Xem chi tiết

Sử dụng định nghĩa giới hạn bên phải của hàm số.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Sử dụng định nghĩa giới hạn bên phải: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {{x_0},b} \right)\). Số \(L\) được gọi là giới hạn bên phải của hàm số \(y = f\left( x \right)\) khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\), ta có \(f\left( {{x_n}} \right) \to L\). Kí hiệu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\).

Đáp án đúng là A.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí