Giải bài 1 trang 72 SGK Toán 10 tập 1 – Chân trời sáng tạo>
Tính độ dài cạnh x trong các tam giác sau:
Đề bài
Tính độ dài cạnh x trong các tam giác sau:
Phương pháp giải - Xem chi tiết
Áp dụng định lí cosin
Lời giải chi tiết
a) Áp dụng định lí cosin, ta có:
\(\begin{array}{*{20}{l}}
{{x^2} = 6,{5^2} + {5^2} - 2.6,5.5.\cos {{72}^o} \approx 47,16}\\
{ \Leftrightarrow x = \sqrt {47,16} \approx 6,87}
\end{array}\)
b) Áp dụng định lí cosin, ta có:
\(\begin{array}{l}{x^2} = {\left( {\frac{1}{5}} \right)^2} + {\left( {\frac{1}{3}} \right)^2} - 2.\frac{1}{5}.\frac{1}{3}.\cos {123^o} \approx 0,224\\ \Leftrightarrow x = \sqrt {0,224} \approx 0,473\end{array}\)
- Giải bài 2 trang 72 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 72 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 4 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 5 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 6 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo