Câu hỏi
Hàm số \(y = f\left( x \right)\) có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiêu?

- A 0
- B 1
- C 2
- D 3
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = {x_0}\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Lời giải chi tiết:
Quan sát đồ thị ta thấy \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = 3;\,\,\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 0 \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to {1^{}}} f\left( x \right)\). Do đó hàm số gián đoạn tại điểm x = 1.
Chọn B.


