Câu hỏi
Cho \(y = {x^3} - m{x^2} - \left( {2{m^2} - 7m + 7} \right) +\) \( 2\left( {m - 1} \right)\left( {2m - 3} \right)\). Hàm số đồng biến trên \(\left[ {2; + \infty } \right)\) khi \(m\) thuộc:
- A \(\left[ { - 1;\dfrac{5}{2}} \right]\)
- B \(\mathbb{R}\)
- C \(\left( { - \infty ; - 1} \right)\) và \(\left( {\dfrac{5}{2}; + \infty } \right)\)
- D \(\left( { - \infty ;6} \right)\)
Phương pháp giải:
- Tính \(y'\).
- Hàm số đồng biến trên \(\left[ {2; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\).
- Giải bất phương trình \(a{x^2} + bx + c > 0\,\,\forall x \in \left( {\alpha ;\beta } \right)\).
+ TH1: \(\left\{ \begin{array}{l}a > 0\\\Delta \le 0\end{array} \right.\).
+ TH2: \(\Delta > 0\), phương trình có 2 nghiệm phân biệt \({x_1} < {x_2}\). Tìm điều kiện để \(\left( {\alpha ;\beta } \right)\) là tập con của tập nghiệm của bất phương trình \(a{x^2} + bx + c > 0\).
Lời giải chi tiết:
Hàm số đã cho xác định trên \(\left[ {2; + \infty } \right)\).
Ta có: \(y' = 3{x^2} - 2mx - 2{m^2} + 7m - 7\).
Để hàm số đồng biến trên \(\left[ {2; + \infty } \right)\) thì \(y' \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\)
\( \Leftrightarrow 3{x^2} - 2mx - 2{m^2} + 7m - 7 \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\,\,\left( 1 \right)\).
Ta có:
\(\begin{array}{l}\Delta ' = {m^2} - 3\left( { - 2{m^2} + 7m - 7} \right)\\\Delta ' = 7{m^2} - 21m + 21 > 0\,\,\forall m \in \mathbb{R}\end{array}\)
Khi đó \(y' = 0\) có 2 nghiệm \({x_1},\,\,{x_2}\) phân biệt (giả sử \({x_1} < {x_2}\)).
Khi đó bất phương trình (1) có sơ đồ miền nghiệm là:
Ta có \(y' \ge 0\,\,\forall x \in \left[ {2; + \infty } \right)\) \( \Leftrightarrow \left[ {2; + \infty } \right) \subset S\).
\(\begin{array}{l} \Leftrightarrow {x_1} < {x_2} \le 2\\ \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} < 4\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} < 4\\{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 \ge 0\end{array} \right.\,\,\left( * \right)\end{array}\)
Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{2m}}{3}\\{x_1}{x_2} = \dfrac{{ - 2{m^2} + 7m - 7}}{3}\end{array} \right.\).
\(\begin{array}{l} \Rightarrow \left( * \right) \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{2m}}{3} < 4\\\dfrac{{ - 2{m^2} + 7m - 7}}{3} - 2.\dfrac{{2m}}{3} + 4 \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < 6\\ - 2{m^2} + 7m - 7 - 4m + 12 \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < 6\\ - 2{m^2} + 3m + 5 \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m < 6\\ - 1 \le m \le \dfrac{5}{2}\end{array} \right. \Leftrightarrow - 1 \le m \le \dfrac{5}{2}\end{array}\)
Vậy \(m \in \left[ { - 1;\dfrac{5}{2}} \right]\).
Chọn A.