Câu hỏi

Tập hợp tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{{mx - 4}}{{x - m}}\) đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\) là:

  • A \(\left( { - 2;1} \right]\)
  • B \(\left( { - 2; - 1} \right)\)
  • C \(\left( { - 2;2} \right)\)
  • D \(\left( { - 2; - 1} \right]\)

Phương pháp giải:

- Tìm ĐKXĐ của hàm số.

- Hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\)  đồng biến trên \(\left( {a;b} \right)\) khi và chỉ khi \(\left\{ \begin{array}{l}y' > 0\\ - \dfrac{d}{c} \notin \left( {a;b} \right)\end{array} \right.\).

Lời giải chi tiết:

ĐKXĐ: \(x \ne m\).

Ta có: \(y' = \dfrac{{ - {m^2} + 4}}{{{{\left( {x - m} \right)}^2}}}\).

Để hàm số đồng biến trên \(\left( { - 1; + \infty } \right)\) thì \(\left\{ \begin{array}{l}y' > 0\\m \notin \left( { - 1; + \infty } \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - {m^2} + 4 > 0\\m \le  - 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 2 < m < 2\\m \le  - 1\end{array} \right. \Leftrightarrow  - 2 < m \le  - 1\).

Vậy \(m \in \left( { - 2; - 1} \right]\).

Chọn D.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay