Câu hỏi

Trong mặt phẳng với hệ tọa độ \(Oxy,\) cho hình vuông \(ABCD\) có \(A\left( {2;3} \right)\) và một đường chéo \(d:3x - y + 1 = 0\). Phương trình đường thẳng \(AB\)có thể là

  • A \(\left[ \begin{array}{l}AB:x + 2y - 7 = 0\\AB: - x + y - 4 = 0\end{array} \right.\)            
  • B \(\left[ \begin{array}{l}AB:2x + y - 7 = 0\\AB:x + y - 4 = 0\end{array} \right.\)   
  • C \(\left[ \begin{array}{l}AB:2x + y - 7 = 0\\AB: - x + 2y - 4 = 0\end{array} \right.\)          
  • D \(\left[ \begin{array}{l}AB:2x + y = 0\\AB: - x + 2y - 2 = 0\end{array} \right.\)

Phương pháp giải:

Gọi VTPT của đường thẳng \(AB\) là \(\left( {a;b} \right)\) và dựa vào tính chất góc hợp bởi đường chéo và cạnh góc vuông bằng \({45^0}\) ta tính được mối liên hệ giữa \(a,b\) và chọn theo tỷ lệ.

Lời giải chi tiết:

\(A\left( {2;3} \right) \notin \Delta :3x - y + 1 = 0 \Rightarrow \Delta \) là đường chéo \(BD\)

Phương trình \(AB:a\left( {x - 2} \right) + b\left( {y - 3} \right) = 0\)

\( \Leftrightarrow ax + by - 2a - 3b = 0\)

\(ABCD\) là hình vuông \( \Rightarrow AB\) hợp với \(BD\) góc \({45^0}\)

\(\begin{array}{l} \Rightarrow \cos {45^0} = \frac{{\left| {3a - b} \right|}}{{\sqrt {9 + 1} .\sqrt {{a^2} + {b^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow 2.\left| {3a - b} \right| = \sqrt {20} .\sqrt {{a^2} + {b^2}} \\ \Rightarrow 4{\left( {3a - b} \right)^2} = 20\left( {{a^2} + {b^2}} \right) \Leftrightarrow 16{a^2} - 24ab - 16{b^2} = 0\\ \Rightarrow \left[ \begin{array}{l}a = 2b\\a = \frac{{ - 1}}{2}b\end{array} \right. \Rightarrow \left[ \begin{array}{l}AB:2x + y - 7 = 0\\AB: - x + 2y - 4 = 0\end{array} \right.\end{array}\)

Chọn  C.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay