Giải SBT toán hình học và đại số 11 nâng cao
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuôn..
Câu 73 trang 128 Sách bài tập Hình học 11 Nâng cao>
Giải bài tập Câu 73 trang 128 Sách bài tập Hình học 11 Nâng cao
Đề bài
Cho M, N lần lượt là trung điểm của các cạnh AB và CD của tứ diện ABCD; P là điểm thuộc đường thẳng AD sao cho \(\overrightarrow {PA} = k\overrightarrow {P{\rm{D}}} \), k là số cho trước (k ≠ 1). Xác định điểm Q thuộc đường thẳng BC sao cho PQ và MN cắt nhau. Khi đó, hãy tính tỉ số \({{QB} \over {QC}}.\)
Lời giải chi tiết
MN cắt PQ nên các điểm M, N, P, Q cùng thuộc một mặt phẳng. Điều này tương đương với có các số x, y sao cho \(\overrightarrow {MP} = x\overrightarrow {MN} + y\overrightarrow {MQ} \).
Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c .\)
Khi đó
\(\eqalign{ & \overrightarrow {MN} = {1 \over 2}\left( {\overrightarrow {A{\rm{D}}} + \overrightarrow {BC} } \right) \cr & = {1 \over 2}\left( { - \overrightarrow a - \overrightarrow b + \overrightarrow c } \right) \cr & \overrightarrow {MP} = {{\overrightarrow {MA} - k\overrightarrow {M{\rm{D}}} } \over {1 - k}} \cr & = {1 \over {1 - k}}\left[ {{1 \over 2}\left( {\overrightarrow a - \overrightarrow b } \right) - {k \over 2}\left( {\overrightarrow a - \overrightarrow b - 2\overrightarrow a } \right)} \right] \cr & = {1 \over {1 - k}}\left[ {{1 \over 2}\left( {\overrightarrow a - \overrightarrow b } \right) + {k \over 2}\left( {\overrightarrow a + \overrightarrow b } \right)} \right] \cr & = {1 \over {2\left( {1 - k} \right)}}\left[ {\left( {1 + k} \right)\overrightarrow a + \left( {k - 1} \right)\overrightarrow b } \right] \cr & = {{k + 1} \over {2\left( {1 - k} \right)}}\overrightarrow a - {1 \over 2}\overrightarrow {b.} \cr & \overrightarrow {MQ} = \overrightarrow {MB} + \overrightarrow {BQ} \cr & = {1 \over 2}\left( {\overrightarrow b - \overrightarrow a } \right) + t\left( { - \overrightarrow b + \overrightarrow c } \right) \cr & = - {1 \over 2}\overrightarrow a + \left( {{1 \over 2} - t} \right)\overrightarrow b + t\overrightarrow c \cr} \)
Từ đó ta có
\(\eqalign{ & \overrightarrow {MP} = x\overrightarrow {MN} + y\overrightarrow {MQ} \cr & \Leftrightarrow \left\{ \matrix{ {{k + 1} \over {2\left( {1 - k} \right)}} = - {1 \over 2}x - {1 \over 2}y \hfill \cr - {1 \over 2} = - {1 \over 2}x + y\left( {{1 \over 2} - t} \right) \hfill \cr 0 = {1 \over 2}x + yt \hfill \cr} \right. \cr & \Rightarrow y = - 1,x = {{k + 1} \over {k - 1}} + 1 = {{2k} \over {k - 1}} \cr & t = {k \over {k - 1}} \cr} \)
Như vậy
\(\eqalign{ & \overrightarrow {BQ} = {k \over {k - 1}}\overrightarrow {BC} = {k \over {k - 1}}\left( {\overrightarrow {BQ} + \overrightarrow {QC} } \right) \cr & \Leftrightarrow \left( {1 - {k \over {k - 1}}} \right)\overrightarrow {BQ} = {k \over {k - 1}}\overrightarrow {QC} \cr & \Leftrightarrow - \overrightarrow {BQ} = k.\overrightarrow {QC} \cr & \Leftrightarrow {{QB} \over {QC}} = \left| k \right| \cr} \)
loigiaihay.com
Các bài khác cùng chuyên mục




