Bài 6 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo


Cho hàm số (fleft( x right) = {x^2} - 2x + 3) có đồ thị (left( C right))

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hàm số \(f\left( x \right) = {x^2} - 2x + 3\) có đồ thị \(\left( C \right)\) và điểm \(M\left( { - 1;6} \right) \in \left( C \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) tại điểm \(M\).

Phương pháp giải - Xem chi tiết

Tiếp tuyến của đồ thị \(f\left( {{x}} \right)\) tại điểm \(M\left( {{x_0};{y_0}} \right)\):

- Hệ số góc: \(f'\left( {{x_0}} \right)\).

- Phương trình tiếp tuyến: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Ta có: \(f'\left( x \right) = 2{\rm{x}} - 2\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( { - 1;6} \right)\) có hệ số góc là: \(f'\left( { - 1} \right) = 2.\left( { - 1} \right) - 2 =  - 4\).

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là:

\(y - 6 =  - 4\left( {x + 1} \right) \)

\(\Leftrightarrow y =  - 4{\rm{x}} - 4 + 6\)

\(\Leftrightarrow y =  - 4{\rm{x}} + 2\).


Bình chọn:
4 trên 3 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí