Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Cùng khám phá


1. Tính đơn điệu của hàm số và dấu của đạo hàm Định lý

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

1. Tính đơn điệu của hàm số và dấu của đạo hàm

Định lý

Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b), (có thể a là \( - \infty \);b là \( + \infty \)).

- Hàm số y = f(x) đồng biến trên khoảng K nếu f’(x) > 0.

- Hàm số y = f(x) đồng biến trên khoảng K nếu f’(x) < 0.

Ví dụ: Hàm số \(y = {x^2} - 4x + 2\) có y’ = 2x – 4.

  • y’ > 0 với \(x \in (2; + \infty )\) nên HS đồng biến trên khoảng \(\left( {2; + \infty } \right)\).
  • y’ < 0 với \(x \in ( - \infty ;2)\) nên HS đồng biến trên khoảng \(\left( { - \infty ;2} \right)\).

Định lý mở rộng

Cho hàm số y = f(x) có đạo hàm trên khoảng (a;b).

- Nếu f’(x)  0 với mọi x thuộc (a;b) và f’(x) = 0 chỉ tại một số hữa hạn điểm thuộc khoảng (a;b) thì hàm số f(x) đồng biến trên khoảng (a;b).

- Nếu f’(x)  0 với mọi x thuộc (a;b) và f’(x) = 0 chỉ tại một số hữa hạn điểm thuộc khoảng (a;b) thì hàm số f(x) nghịch biến trên khoảng (a;b).

2. Cực trị của hàm số

Khái niệm cực trị của hàm số

Cho hàm số y = f(x) xác định và liên tục trên khoảng (a;b) (a có thể là \( - \infty \), b có thể là \( + \infty \)) và điểm \({x_0} \in \left( {a;b} \right)\).

- Nếu tồn tại số h > 0 sao cho f(x) < f(\({x_0}\)) \(\forall x \in \left( {{x_0} - h;{x_0} + h} \right) \subset \left( {a;b} \right)\) và \(x \ne {x_0}\) thì hàm số f(x) đạt cực đại tại \({x_0}\).

- Nếu tồn tại số h > 0 sao cho f(x) > f(\({x_0}\)) \(\forall x \in \left( {{x_0} - h;{x_0} + h} \right) \subset \left( {a;b} \right)\) và \(x \ne {x_0}\) thì hàm số f(x) đạt cực tiểu tại \({x_0}\).

Ví dụ: Cho đồ thị của hàm số y = f(x) như sau:

Hàm số đạt cực tiểu tại x = -1 và \({y_{CT}}\)= y(-1) = 2.

Hàm số đạt cực đại tại x = 0 và = y(0) = 3.

Hàm số đạt cực tiểu tại x = 1 và \({y_{CT}}\)= y(1) = 2.

Định lí (điều kiện đủ để hàm số có cực trị)

Giả sử hàm số y = f(x) liên tục trên khoảng (a;b) chứa điểm \({x_0}\) và có đạo hàm trên các khoảng \(\left( {a;{x_0}} \right)\) và \(\left( {{x_0};b} \right)\). Khi đó:

- Nếu f’(x) < 0 \(\forall x \in \left( {a;{x_0}} \right)\) và f’(x) > 0 \(\forall x \in \left( {{x_0};b} \right)\) thì \({x_0}\) là một điểm cực tiểu của hàm số f(x).

- Nếu f’(x) > 0 \(\forall x \in \left( {a;{x_0}} \right)\) và f’(x) < 0 \(\forall x \in \left( {{x_0};b} \right)\) thì \({x_0}\) là một điểm cực đại của hàm số f(x).

Ví dụ: Tìm cực trị của hàm số \(y = {x^3} - 6{x^2} + 9x + 30\).

Tập xác định của hàm số là R.

Ta có: \(y' = 3{x^2} - 12x + 9\); y’ = 0 \( \Leftrightarrow \)x = 1 hoặc x = 3.

BBT:

Hàm số đạt cực đại tại x = 1 và = y(1) = 34.

Hàm số đạt cực tiểu tại x = 3 và \({y_{CT}}\)= y(3) = 30.

Tổng quát, ta có quy tắc tìm cực trị của hàm số y = f(x)

  1. Tìm tập xác định của hàm số.
  2. Tính đạo hàm f’(x). Tìm các điểm \({x_i}\)(i=1,2,…) mà tại đó đạo hàm bằng 0 hoặc không tồn tại.
  3. Lập BBT của hàm số.
  4. Nêu kết luận về các điểm trực trị và giá trị cực trị.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí