Giải mục 2 trang 76, 77 SGK Toán 9 tập 1 - Cùng khám phá


Trong Hình 4.6, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

HĐ2

Trả lời câu hỏi Hoạt động 2 trang 76 SGK Toán 9 Cùng khám phá

Trong Hình 4.6, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B.

Phương pháp giải:

Trong tam giác vuông có góc nhọn \(\alpha \), khi đó:

+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là \(\sin \alpha \).

+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là \(\cos \alpha \).

+ Tỉ số giữa cạnh đối và cạnh kề được gọi là \(\tan \alpha \).

+ Tỉ số giữa cạnh kề và cạnh đối được gọi là \(\cot \alpha \).

Lời giải chi tiết:

Tam giác ABC vuông tại C, \(CB = AC = 1\) nên tam giác ABC vuông cân tại C. Do đó, \(\widehat B = {45^o}\).

Tam giác ABC vuông tại C nên \(A{B^2} = B{C^2} + A{C^2} = {1^2} + {1^2} = 2\) (Định lí Pythagore).

Do đó, \(AB = \sqrt 2 \).

Suy ra, \(\sin B = \frac{{AC}}{{AB}} = \frac{1}{{\sqrt 2 }}\), \(\cos B = \frac{{BC}}{{AB}} = \frac{1}{{\sqrt 2 }}\), \(\tan B = \frac{{AC}}{{BC}} = 1\), \(\cot B = \frac{{BC}}{{AC}} = 1\).

HĐ3

Trả lời câu hỏi Hoạt động 3 trang 77 SGK Toán 9 Cùng khám phá

Trong Hình 4.7, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B và góc \({A_1}\).

Phương pháp giải:

Trong tam giác vuông có góc nhọn \(\alpha \), khi đó:

+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là \(\sin \alpha \).

+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là \(\cos \alpha \).

+ Tỉ số giữa cạnh đối và cạnh kề được gọi là \(\tan \alpha \).

+ Tỉ số giữa cạnh kề và cạnh đối được gọi là \(\cot \alpha \).

Lời giải chi tiết:

Tam giác ABC có \(AB = BC = CA = 2\) nên tam giác ABC đều.

Do đó, AH là đường cao đồng thời là đường trung tuyến.

Do đó, \(BH = \frac{1}{2}BC = \frac{1}{2}.2 = 1\).

Tam giác AHB vuông tại H nên \(A{H^2} + H{B^2} = A{B^2}\) (Định lí Pythagore).

Suy ra: \(A{H^2} = A{B^2} - B{H^2} = {2^2} - {1^2} = 3\).

Do đó, \(AH = \sqrt 3 \)

Do đó, \(\sin B = \frac{{AH}}{{AB}} = \frac{{\sqrt 3 }}{2}\), \(\cos B = \frac{{BH}}{{AB}} = \frac{1}{2}\), \(\tan B = \frac{{AH}}{{BH}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 \), \(\cot B = \frac{{BH}}{{AH}} = \frac{1}{{\sqrt 3 }}\).

\(\sin {A_1} = \frac{{BH}}{{AB}} = \frac{1}{2}\), \(\cos {A_1} = \frac{{AH}}{{AB}} = \frac{{\sqrt 3 }}{2}\), \(\tan {A_1} = \frac{{BH}}{{AH}} = \frac{1}{{\sqrt 3 }}\), \(\cot {A_1} = \frac{{AH}}{{BH}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 \).

Tam giác ABC đều nên \(\widehat B = {60^o}\).

Tam giác AHB vuông tại H nên \(\widehat {{A_1}} = {90^o} - \widehat B = {30^o}\).

LT2

Trả lời câu hỏi Luyện tập 2 trang 77 SGK Toán 9 Cùng khám phá

Trong Hình 4.9, hãy tính các tỉ số \(\frac{{PN}}{{PQ}}\) và \(\frac{{PN}}{{PM}}\), từ đó tìm \(\frac{{PQ}}{{PM}}\).

Phương pháp giải:

+ Xét tam giác NPQ vuông tại N có: \(\sin NQP = \frac{{PN}}{{PQ}}\), từ đó tính PQ theo PN và sin NQP.

+ Xét tam giác NPM vuông tại N có: \(\sin M = \frac{{NP}}{{MP}}\), từ đó tính MP theo PN và sinM.

+ Do đó, tính được tỉ số \(\frac{{PQ}}{{PM}}\)

Lời giải chi tiết:

Xét tam giác NPQ vuông tại N có:

\(\sin NQP = \frac{{PN}}{{PQ}}\) nên \(PQ = PN.\sin NQP = PN.\sin {60^o} = \frac{{\sqrt 3 }}{2}PN\).

Xét tam giác NPM vuông tại N có:

\(\sin M = \frac{{NP}}{{MP}}\), nên \(MP = PN.\sin M = PN.\sin {45^o} = \frac{{\sqrt 2 }}{2}PN\).

Do đó, \(\frac{{PQ}}{{PM}} = \frac{{\frac{{\sqrt 3 }}{2}PN}}{{\frac{{\sqrt 2 }}{2}PN}} = \frac{{\sqrt 6 }}{2}\)


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục 3 trang 78 SGK Toán 9 tập 1 - Cùng khám phá

    Cho tam giác ABC vuông tại A (Hình 4.10). a) Tổng số đo của góc B và góc C bằng bao nhiêu độ? b) Viết các tỉ số lượng giác của góc B và góc C, từ đó chỉ ra các cặp tỉ số lượng giác bằng nhau.

  • Giải mục 4 trang 79, 80, 81 SGK Toán 9 tập 1 - Cùng khám phá

    Sử dụng máy tính cầm tay, hãy tính \(\cos {13^o}\) và \(\tan {71^o}25'\). Làm tròn kết quả đến hàng phần trăm.

  • Giải bài tập 4.1 trang 82 SGK Toán 9 tập 1 - Cùng khám phá

    Tính tỉ số lượng giác của các góc \(\alpha \) và \(\beta \) trong mỗi trường hợp ở Hình 4.13.

  • Giải bài tập 4.2 trang 82 SGK Toán 9 tập 1 - Cùng khám phá

    Sử dụng máy tính cầm tay, hãy tính và sắp xếp các tỉ số lượng giác sau theo thứ tự từ nhỏ đến lớn: a) \(\sin {56^o},\sin {10^o},\sin {48^o},\sin {14^o}\); b) \(\cos {78^o},\cos {38^o},\cos {13^o},\cos {83^o}\).

  • Giải bài tập 4.3 trang 82 SGK Toán 9 tập 1 - Cùng khám phá

    Cho hình chữ nhật ABCD có \(\widehat {ABD} = 2\widehat {CBD}\). Hãy tính tỉ số chiều dài và chiều rộng của hình chữ nhật ABCD.

>> Xem thêm

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí