

Giải bài tập 9.27 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức>
Cho hình thoi ABCD có (widehat A = {60^o}). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.
Tổng hợp Đề thi vào 10 có đáp án và lời giải
Toán - Văn - Anh
Đề bài
Cho hình thoi ABCD có \(\widehat A = {60^o}\). Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng MBNPDQ là lục giác đều.
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+ Chứng minh tam giác ABD đều nên \(BD = AB = AD\).
+ Chứng minh \(MB = BN = PD = DQ = MQ = NP = \frac{{AB}}{2}\).
+ Chứng minh \(\widehat B = \widehat {BNP} = \widehat {NPD} = \widehat D = \widehat {DQM} = \widehat {QMB} = {120^o}\)
+ Suy ra MBNPDQ là lục giác đều.
Lời giải chi tiết
Vì ABCD là hình thoi nên \(AB = BC = CD = AD\).
Vì M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên \(MB = BN = NC = PC = PD = DQ = \frac{{AB}}{2}\) (1)
Tam giác ABD có: \(AB = AD\) nên tam giác ABD là tam giác cân tại A, mà \(\widehat A = {60^o}\) nên tam giác ABD đều. Do đó, \(AB = BD\).
Vì M, Q lần lượt là trung điểm của AB và AD (gt) nên MQ là đường trung bình của tam giác ABD. Do đó, \(MQ = \frac{1}{2}BD = \frac{1}{2}AB\) (2).
Vì N, P lần lượt là trung điểm của BC và CD (gt) nên NP là đường trung bình của tam giác CBD. Do đó, \(NP = \frac{1}{2}BD = \frac{1}{2}AB\) (3)
Từ (1), (2) và (3) ta có: \(MB = BN = PD = DQ = MQ = NP\) (*)
Vì ABCD là hình thoi nên \(\widehat {ABC} = \widehat {ADC};\widehat C = \widehat A = {60^o}\)
Ta có:
\(\widehat {ABC} + \widehat {ADC} + \widehat C + \widehat A = {360^o} \Rightarrow \widehat {ABC} = \widehat {ADC} = {360^o} - {2.60^o} = {120^o}\)
Tam giác NPC có: \(NC = PC\) nên tam giác NPC cân tại C. Mà \(\widehat C = {60^o}\) nên tam giác NPC đều.
Do đó, \(\widehat {CNP} = {60^o}\)
Ta có: \(\widehat {BNP} + \widehat {PNC} = {180^o}\) (hai góc kề bù) nên \(\widehat {BNP} = {120^o}\)
Chứng minh tương tự ta có:
\(\widehat {NPD} = \widehat {DQM} = \widehat {QMB} = {120^o}\)
Do đó: \(\widehat {ABC} = \widehat {ADC} = \widehat {BNP} = \widehat {NPD} = \widehat {DQM} = \widehat {QMB} = {120^o}\) (**)
Từ (*) và (**) ta có: MBNPDQ là lục giác đều.


- Giải bài tập 9.28 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.29 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.30 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.26 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức
- Giải bài tập 9.25 trang 89 SGK Toán 9 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục