Giải bài tập 6.29 trang 23 SGK Toán 9 tập 2 - Cùng khám phá>
Với mỗi trường hợp sau, đã cho biết một nghiệm x1 của phương trình, hãy tìm nghiệm còn lại: a) \(2{x^2} - 7x + 3 = 0;{x_1} = 3\) b) \(3{x^2} - 4x - 6 + 4\sqrt 2 = 0;{x_1} = \sqrt 2 \) c) \(2{x^2} + 7x + 3 = 0;{x_1} = - \frac{1}{2}\) d) \({x^2} - 4mx + m + 2 = 0;{x_1} = 1\)
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Với mỗi trường hợp sau, đã cho biết một nghiệm x1 của phương trình, hãy tìm nghiệm còn lại:
a) \(2{x^2} - 7x + 3 = 0;{x_1} = 3\)
b) \(3{x^2} - 4x - 6 + 4\sqrt 2 = 0;{x_1} = \sqrt 2 \)
c) \(2{x^2} + 7x + 3 = 0;{x_1} = - \frac{1}{2}\)
d) \({x^2} - 4mx + m + 2 = 0;{x_1} = 1\)
Phương pháp giải - Xem chi tiết
Dựa vào: Công thức của định lí Vi – ét:
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0(a \ne 0)\) thì:
\({x_1} + {x_2} = - \frac{b}{a}\) để tìm x2.
Lời giải chi tiết
a) \(2{x^2} - 7x + 3 = 0;{x_1} = 3\)
suy ra \({x_2} = \frac{7}{2} - 3 = \frac{1}{2}\)
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ {3;\frac{1}{2}} \right\}\)
b) \(3{x^2} - 4x - 6 + 4\sqrt 2 = 0;{x_1} = \sqrt 2 \)
suy ra \({x_2} = \frac{4}{3} - \sqrt 2 = \frac{{4 - 3\sqrt 2 }}{3}\)
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ {\sqrt 2 ;\frac{{4 - 3\sqrt 3 }}{3}} \right\}\)
c) \(2{x^2} + 7x + 3 = 0;{x_1} = - \frac{1}{2}\)
suy ra \({x_2} = - \frac{7}{2} - \left( { - \frac{1}{2}} \right) = - 3\)
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ { - \frac{1}{2}; - 3} \right\}\)
d) \({x^2} - 4mx + m + 2 = 0;{x_1} = 1\)
suy ra \({x_2} = 4m - 1\)
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ {1;4m - 1} \right\}\).


- Giải bài tập 6.30 trang 23 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.31 trang 24 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.32 trang 24 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.33 trang 24 SGK Toán 9 tập 2 - Cùng khám phá
- Giải bài tập 6.34 trang 24 SGK Toán 9 tập 2 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá