Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo


Xét một chất điểm chuyển động dọc theo trục (Ox). Toạ độ của chất điểm tại thời điểm (t) được xác định bởi hàm số (x(t) = {t^3} - 6{t^2} + 9t) với (t ge 0). Khi đó (x'(t)) là vận tốc của chất điểm tại thời điểm (t), kí hiệu (v(t)); (v'(t)) là gia tốc chuyển động của chất điểm tại thời điểm (t), kí hiệu (a(t)). a) Tìm các hàm (v(t))và (a(t)) b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

 

 

Xét một chất điểm chuyển động dọc theo trục \(Ox\). Toạ độ của chất điểm tại thời điểm \(t\) được xác định bởi hàm số \(x(t) = {t^3} - 6{t^2} + 9t\) với \(t \ge 0\). Khi đó \(x'(t)\) là vận tốc của chất điểm tại thời điểm \(t\), kí hiệu \(v(t)\); \(v'(t)\) là gia tốc chuyển động của chất điểm tại thời điểm \(t\), kí hiệu \(a(t)\).
a) Tìm các hàm \(v(t)\)và \(a(t)\)
b) Trong khoảng thời gian nào vận tốc của chất điểm tăng, trong khoảng thời gian nào vận tốc của chất điểm giảm?

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính đạo hàm, xét dấu đạo hàm.

Lời giải chi tiết

a) \(v(t) = x'(t) = 3{t^2} - 12t + 9\).

\(a(t) = v'(t) = 6t - 12\).

b) Tập xác định: \(D = [0; + \infty )\).

\(a(t) = 0 \Leftrightarrow t = 2\).

Vận tốc chất điểm tăng nghĩa là đồ thị hàm v(t) đi lên từ trái sang, vận tốc chất điểm giảm nghĩa là đồ thị hàm v(x) đi xuống từ trái sang.

Để xét sự biến thiên đồ thị hàm v(t), ta xét dấu v'(t) = a(t).

Bảng biến thiên:

Vậy trong khoảng từ t = 0 đến t = 2 thì vận tốc của chất điểm giảm, từ t = 2 trở đi thì vận tốc của chất điểm tăng.


Bình chọn:
4.2 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí