Giải bài tập 4.25 trang 27 SGK Toán 12 tập 2 - Kết nối tri thức


Cho đồ thị hàm số (y = fleft( x right)) trên đoạn (left[ { - 2;2} right]) như Hình 4.32. Biết (intlimits_{ - 2}^{ - 1} {fleft( x right)dx} = intlimits_1^2 {fleft( x right)dx} = frac{{ - 22}}{{15}}) và (intlimits_{ - 1}^1 {fleft( x right)dx} = frac{{76}}{{15}}). Khi đó, diện tích của hình phẳng được tô màu là A. 8. B. (frac{{22}}{{15}}). C. (frac{{32}}{{15}}). D. (frac{{76}}{{15}}).

Đề bài

 

 

Cho đồ thị hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ { - 2;2} \right]\) như Hình 4.32.

Biết \(\int\limits_{ - 2}^{ - 1} {f\left( x \right)dx}  = \int\limits_1^2 {f\left( x \right)dx}  = \frac{{ - 22}}{{15}}\) và \(\int\limits_{ - 1}^1 {f\left( x \right)dx}  = \frac{{76}}{{15}}\). Khi đó, diện tích của hình phẳng được tô màu là

A. 8.

B. \(\frac{{22}}{{15}}\).

C. \(\frac{{32}}{{15}}\).

D. \(\frac{{76}}{{15}}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về diện tích hình phẳng giới hạn bởi hai đồ thị hàm số và đường thẳng \(x = a,x = b\) để tính: Diện tích S của hình phẳng giới hạn đồ thị của hai hàm số f(x), g(x) liên tục trên đoạn [a; b] và hai đường thẳng \(x = a,x = b\), được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Lời giải chi tiết

Diện tích cần tìm là:

\(S = \int\limits_{ - 2}^2 {\left| {f(x)} \right|dx}  = \int\limits_{ - 2}^{ - 1} {\left| {f(x)} \right|dx}  + \int\limits_{ - 1}^1 {\left| {f(x)} \right|dx}  + \int\limits_1^2 {\left| {f(x)} \right|dx} \)

\( =  - \int\limits_{ - 2}^{ - 1} {f(x)dx}  + \int\limits_{ - 1}^1 {f(x)dx}  - \int\limits_1^2 {f(x)dx}  =  - \left( { - \frac{{22}}{{15}}} \right) + \frac{{76}}{{15}} - \left( { - \frac{{22}}{{15}}} \right) = 8\).

Chọn A


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí