Giải Bài 9.25 trang 60 sách bài tập toán 7 - Kết nối tri thức với cuộc sống


Xét tam giác ABC vuông tại A; đường phân giác góc B cắt cạnh AC tại E; đường thẳng qua E vuông góc với BC cắt đường thẳng AB tại K. Chứng minh: a)AE < EC b) BK = BC.

Đề bài

Xét tam giác ABC vuông tại A; đường phân giác góc B cắt cạnh AC tại E; đường thẳng qua E vuông góc với BC cắt đường thẳng AB tại K. Chứng minh:

a)AE < EC

b) BK = BC.

Phương pháp giải - Xem chi tiết

a)

-Chứng minh: EA = EH (Điểm nằm trên tia phân giác của góc thì cách đều 2 cạnh của góc đó).

-Áp dụng mối liên hệ giữa cạnh huyền và cạnh góc vuông.

b)

Chứng minh tam giác BCK cân tại B.

Lời giải chi tiết

Xét tam giác ABC vuông tại A; đường phân giác góc B cắt cạnh AC tại E; đường thẳng qua E (ảnh 1)

a)

Đường thẳng EK cắt BC tại H

Ta có: E nằm trên đường phân giác góc B

\( \Rightarrow EA = EH\)(T/c)

Lại có: Tam giác EHC vuông tại H có: EH là cạnh góc vuông, EC là cạnh huyền

\( \Rightarrow EH < EC\) (mlh giữa cạnh huyền và cạnh góc vuông)

\( \Rightarrow EA < EC\).

b)

Xét tam giác BCK có:

\(\left\{ \begin{array}{l}KH \bot BC\\CA \bot BK\end{array} \right.\)

\( \Rightarrow \)CH, BK là đường cao trong tam giác BCK

Mà CH cắt BK tại  E

\( \Rightarrow \)E là trực tâm tam giác BCK

\( \Rightarrow \)BE là đường cao

\( \Rightarrow \) BE vừa là đường phân giác, vừa là đường cao xuất phát từ B của tam giác BCK

\( \Rightarrow \)Tam giác BCK cân tại B.

\( \Rightarrow \)BC = BK. 


Bình chọn:
3.8 trên 8 phiếu

Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí