

Giải bài 9.24 trang 76 SGK Toán 7 tập 2 - Kết nối tri thức>
Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của tam giác cân, xét 2 tam giác bằng nhau rồi chỉ ra 2 cạnh tương ứng bằng nhau.
Lời giải chi tiết
Vì tam giác ABC cân tại A nên AB = AC; \(\widehat {ABC} = \widehat {ACB}\) ( tính chất)
Vì BE là là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)
Vì CF là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)
Do đó, \(\widehat {{B_1}} = \widehat {{C_1}}\)
Xét \(\Delta ABE\) và \(\Delta ACF\), ta có:
\(\widehat A\) chung
AB = AC
\(\widehat {{B_1}} = \widehat {{C_1}}\)
\( \Rightarrow \Delta ABE = \Delta ACF\left( {g.c.g} \right)\)
\( \Rightarrow \)BE = CF ( 2 cạnh tương ứng)


- Giải bài 9.25 trang 76 SGK Toán 7 tập 2 - Kết nối tri thức
- Giải bài 9.23 trang 76 SGK Toán 7 tập 2 - Kết nối tri thức
- Giải bài 9.22 trang 76 SGK Toán 7 tập 2 - Kết nối tri thức
- Giải bài 9.21 trang 76 SGK Toán 7 tập 2 - Kết nối tri thức
- Giải bài 9.20 trang 76 SGK Toán 7 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Giải mục 2 trang 104 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Lý thuyết quan hệ giữa ba cạnh của một tam giác Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Toán 7 Kết nối tri thức
- Lý thuyết quan hệ giữa góc và cạnh đối diện trong một tam giác Toán 7 Kết nối tri thức
- Giải câu hỏi trang 108, 109 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2
- Giải mục 2 trang 104 SGK Toán 7 Kết nối tri thức với cuộc sống tập 2