Giải bài 6.24 trang 19 SGK Toán 8 tập 2 - Kết nối tri thức


Thực hiện các phép tính sau:

Đề bài

Thực hiện các phép tính sau:

\(a)\frac{{x - y}}{{xy}} + \frac{{y - z}}{{yz}} + \frac{{z - x}}{{z{\rm{x}}}}\)

\(b)\frac{x}{{{{\left( {x - y} \right)}^2}}} + \frac{y}{{{y^2} - {x^2}}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng các quy tắc cộng, trừ hai phân thức

Lời giải chi tiết

\(\begin{array}{l}a)\frac{{x - y}}{{xy}} + \frac{{y - z}}{{yz}} + \frac{{z - x}}{{z{\rm{x}}}}\\ = \frac{{z\left( {x - y} \right) + x\left( {y - z} \right) + y\left( {z - x} \right)}}{{xyz}} = \frac{{z{\rm{x}} - zy + xy - x{\rm{z}} + yz - {\rm{yx}}}}{{xyz}} = 0\end{array}\)

\(\begin{array}{l}b)\frac{x}{{{{\left( {x - y} \right)}^2}}} + \frac{y}{{{y^2} - {x^2}}}\\ = \frac{x}{{{{\left( {x - y} \right)}^2}}} - \frac{y}{{{x^2} - {y^2}}}\\ = \frac{x}{{{{\left( {x - y} \right)}^2}}} - \frac{y}{{\left( {x - y} \right)\left( {x + y} \right)}}\\ = \frac{{x\left( {x + y} \right) - y\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\\ = \frac{{{x^2} + xy - {\rm{yx}} + {y^2}}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}} = \frac{{{x^2} + {y^2}}}{{{{\left( {x - y} \right)}^2}\left( {x + y} \right)}}\end{array}\)


Bình chọn:
4.4 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí