Giải bài 3.21 trang 38 sách bài tập toán 9 - Kết nối tri thức tập 1


Sử dụng định nghĩa căn bậc ba của một số thực, tính giá trị của các biểu thức sau: a) (sqrt[3]{{ - 27}} + 2sqrt[3]{{frac{1}{8}}} + 5sqrt[3]{{ - 0,008}}); b) (sqrt[3]{{0,001}} - 3sqrt[3]{{frac{8}{{125}}}} + 2sqrt[3]{{ - 64}}).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Sử dụng định nghĩa căn bậc ba của một số thực, tính giá trị của các biểu thức sau:

a) \(\sqrt[3]{{ - 27}} + 2\sqrt[3]{{\frac{1}{8}}} + 5\sqrt[3]{{ - 0,008}}\);

b) \(\sqrt[3]{{0,001}} - 3\sqrt[3]{{\frac{8}{{125}}}} + 2\sqrt[3]{{ - 64}}\).

Phương pháp giải - Xem chi tiết

\({\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a\).

Lời giải chi tiết

a) \(\sqrt[3]{{ - 27}} + 2\sqrt[3]{{\frac{1}{8}}} + 5\sqrt[3]{{ - 0,008}} \)

\(= \sqrt[3]{{{{\left( { - 3} \right)}^3}}} + 2\sqrt[3]{{{{\left( {\frac{1}{2}} \right)}^3}}} + 5\sqrt[3]{{{{\left( { - 0,2} \right)}^3}}} \\=  - 3 + 2.\frac{1}{2} + 5.\left( { - 0,2} \right) =  - 3;\)

b) \(\sqrt[3]{{0,001}} - 3\sqrt[3]{{\frac{8}{{125}}}} + 2\sqrt[3]{{ - 64}} \)

\(= \sqrt[3]{{{{0,1}^3}}} - 3\sqrt[3]{{{{\left( {\frac{2}{5}} \right)}^3}}} + 2\sqrt[3]{{{{\left( { - 4} \right)}^3}}}\\ = 0,1 - 3.\frac{2}{5} - 8 = \frac{{ - 91}}{{10}}.\)


Bình chọn:
4.2 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí