Bài 14 trang 233 SBT đại số và giải tích 11


Giải bài 14 trang 233 sách bài tập đại số và giải tích 11. Hãy tính giới hạn...

Lựa chọn câu để xem lời giải nhanh hơn

Hãy tính giới hạn \(\mathop {\lim }\limits_{n \to  + \infty } {x_n}\).

LG a

\({x_n} = \frac{{\sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \frac{{\sqrt n }}{{\sqrt {n + 1}  + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt {n\left( {1 + \frac{1}{n}} \right)}  + \sqrt n }}\\ = \lim \frac{{\sqrt n }}{{\sqrt n \left( {\sqrt {1 + \frac{1}{n}}  + 1} \right)}}\\ = \lim \frac{1}{{\sqrt {1 + \frac{1}{n}}  + 1}} = \frac{1}{{1 + 1}}\\ = \frac{1}{2}\end{array}\)

LG b

\({x_n} = \sqrt[3]{{1 + {n^3}}} - n\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{1 + {n^3}}} - n} \right)\\ = \lim \frac{{\left( {1 + {n^3}} \right) - {n^3}}}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + \sqrt[3]{{1 + {n^3}}}.n + {n^2}}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{1 + {n^3}}}} \right)}^2} + n.\sqrt[3]{{1 + {n^3}}} + {n^2}}}\\ = 0\end{array}\)

LG c

\({x_n} = {n^2}\left( {n - \sqrt {{n^2} + 1} } \right)\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left[ {{n^2}\left( {n - \sqrt {{n^2} + 1} } \right)} \right]\\ = \lim \frac{{{n^2}.\left[ {{n^2} - \left( {{n^2} + 1} \right)} \right]}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \frac{{{n^2}.\left( { - 1} \right)}}{{n + \sqrt {{n^2} + 1} }}\\ = \lim \left[ { - n.\frac{n}{{n + \sqrt {{n^2} + 1} }}} \right]\\ = \lim \left[ { - n.\frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }}} \right]\\ =  - \infty \end{array}\)

Vì \(\lim \left( { - n} \right) =  - \infty \); \(\lim \frac{1}{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }} = \frac{1}{{1 + 1}} = \frac{1}{2} > 0\).

LG d

\({x_n} = \sqrt[3]{{{n^2} - {n^3}}} + n\)

Lời giải chi tiết:

\(\begin{array}{l}\lim {x_n} = \lim \left( {\sqrt[3]{{{n^2} - {n^3}}} + n} \right)\\ = \lim \frac{{{n^2} - {n^3} + {n^3}}}{{{{\left( {\sqrt[3]{{{n^2} - {n^3}}}} \right)}^2} - n.\sqrt[3]{{{n^2} - {n^3}}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}}} \right)}^2} - n.\sqrt[3]{{{n^3}\left( {\frac{1}{n} - 1} \right)}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{{\left( {n\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - n.n\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - {n^2}\sqrt[3]{{\frac{1}{n} - 1}} + {n^2}}}\\ = \lim \frac{{{n^2}}}{{{n^2}\left[ {{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1} \right]}}\\ = \lim \frac{1}{{{{\left( {\sqrt[3]{{\frac{1}{n} - 1}}} \right)}^2} - \sqrt[3]{{\frac{1}{n} - 1}} + 1}}\\ = \frac{1}{{{{\left( { - 1} \right)}^2} - \left( { - 1} \right) + 1}} = \frac{1}{3}\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí