Câu hỏi
\(\left( E \right):\,\,\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{4} = 1,\,\,\left( P \right):\,\,{y^2} = x,\,\,\left( P \right) \cap \left( E \right) = A,B\). Tính \(AB\).
- A \(\sqrt {\dfrac{{\sqrt {657} - 9}}{2}} \)
- B \(\dfrac{3}{2}\)
- C 4
- D 6
Lời giải chi tiết:
* Thay phương trình \(\left( P \right)\) vào \(\left( E \right)\) ta có: \(\dfrac{{{x^2}}}{9} + \dfrac{x}{4} = 1\).
\( \Leftrightarrow 4{x^2} + 9x - 36 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ - 9 - \sqrt {657} }}{8}\,\,\left( {ktm} \right)\\x = \dfrac{{ - 9 + \sqrt {657} }}{8}\,\,\left( {tm} \right)\end{array} \right.\)
* \(x = \dfrac{{\sqrt {657} - 9}}{8} \Rightarrow y = \pm \sqrt {\dfrac{{\sqrt {657} - 9}}{8}} \)
\( \Rightarrow AB = 2\left| {{y_A}} \right| = 2\sqrt {\dfrac{{\sqrt {657} - 9}}{8}} = \sqrt {\dfrac{{\sqrt {657} - 9}}{2}} \) .
Chọn A.