Câu hỏi
Cho \(I = \int\limits_{{\pi \over 6}}^{{\pi \over 4}} {{{dx} \over {{{\cos }^2}x{{\sin }^2}x}}} = a + b\sqrt 3 \) với a, b là số hữu tỉ. Tính giá trị a – b.
- A \( - {1 \over 3}\)
- B \( - {2 \over 3}\)
- C \({1 \over 3}\)
- D \({2 \over 3}\)
Phương pháp giải:
Sử dụng công thức nhân đôi \(\sin 2x = 2\sin x\cos x\)
Lời giải chi tiết:
\(I = \int\limits_{{\pi \over 6}}^{{\pi \over 4}} {{{dx} \over {{{\cos }^2}x{{\sin }^2}x}}} = \int\limits_{{\pi \over 6}}^{{\pi \over 4}} {{{4dx} \over {{{\sin }^2}2x}}} = \left. { - 2\cot 2x} \right|_{{\pi \over 6}}^{{\pi \over 4}} = - 2\left( {0 - {1 \over {\sqrt 3 }}} \right) = {2 \over {\sqrt 3 }} = {{2\sqrt 3 } \over 3} \Rightarrow \left\{ \matrix{ a = 0 \hfill \cr b = {2 \over 3} \hfill \cr} \right. \Rightarrow a - b = - {2 \over 3}\)
Chọn B.


