Câu hỏi
Biết \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right) = \dfrac{{x + 3}}{{x - 2}}\) thỏa mãn \(F\left( 1 \right) = 1\). Tính \(F\left( 0 \right)\)
- A \(F\left( 0 \right) = 5\ln 2\)
- B \(F\left( 0 \right) = 1 + \ln 2\)
- C \(F\left( 0 \right) = \ln 2\)
- D \(F\left( 0 \right) = 1 + 5\ln 2\)
Phương pháp giải:
- Biến đổi \(\dfrac{{x + 3}}{{x - 2}} = 1 + \dfrac{5}{{x - 2}}\).
- Áp dụng công thức tính nguyên hàm: \(\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,\,\,\int {\dfrac{{dx}}{x} = \ln \left| x \right| + C} \).
- Thay \(F\left( 1 \right) = 1\), tính \(C\). Từ đó tính \(F\left( 0 \right)\).
Lời giải chi tiết:
Ta có
\(\begin{array}{l}F\left( x \right) = \int {f\left( x \right)dx} = \int {\dfrac{{x + 3}}{{x - 2}}dx} \\\,\,\,\,\,\,\,\,\,\,\, = \int {\left( {1 + \dfrac{5}{{x - 2}}} \right)dx} = x + 5\ln \left| {x - 2} \right| + C\end{array}\).
Theo bài ra ta có: \(F\left( 1 \right) = 1 \Rightarrow 1 + 5\ln 1 + C = 1 \Rightarrow C = 0\).
Do đó \( \Rightarrow F\left( x \right) = x + 5\ln \left| {x - 2} \right|\).
Vậy \(F\left( 0 \right) = 5\ln 2\).
Chọn A.