Câu hỏi
Trong không gian \(Oxyz,\) cho hai điểm \(A\left( {1;\,\,2;\,\,3} \right),\,\,\,B\left( {2;\,\,0;\,\,5} \right).\) Viết phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(A\) và vuông góc với đường thẳng \(AB.\)
- A \(x + 2y + 2z + 11 = 0\)
- B \(x - 2y + 2z - 14 = 0\)
- C \(x + 2y + 2z - 11 = 0\)
- D \(x - 2y + 2z - 3 = 0\)
Phương pháp giải:
Mặt phẳng vuông góc với \(AB\) nhận \(\overrightarrow {AB} \) làm VTPT.
Phương trình mặt phẳng đi qua điểm \(M\left( {{x_0};\;{y_0};\;{z_0}} \right)\) và có VTPT \(\overrightarrow n = \left( {A;\;B;\;C} \right)\) có phương trình: \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0.\)
Lời giải chi tiết:
Ta có: \(\overrightarrow {AB} = \left( {1; - 2;\,\,2} \right)\)
Mặt phẳng \(\left( P \right)\) cần tìm vuông góc với \(AB\) \( \Rightarrow \) nhận vecto \(\left( {1;\, - 2;\,\,2} \right)\) làm VTPT.
\( \Rightarrow \left( P \right)\) đi qua \(A\left( {1;\,\,2;\,\,3} \right)\) và vuông góc với \(AB\) có phương trình:
\(x - 1 - 2\left( {y - 2} \right) + 2\left( {z - 3} \right) = 0\) \( \Leftrightarrow x - 2y + 2z - 3 = 0.\)
Chọn D.