Câu hỏi

Biết rằng hàm số \(y =  - {x^3} + 3{x^2} + 2020\) đồng biến trên khoảng \(\left( {a;\,\,b} \right).\) Khẳng định nào sau đây là đúng?

  • A \(a + b > 4\)
  • B \(b - a > 2\)
  • C \(b - a \le 2\)
  • D \(a + b < 0\)

Phương pháp giải:

Khảo sát sự biến thiên của hàm số \(y =  - {x^3} + 3{x^2} + 2020\) để tìm khoảng đồng biến \(\left( {a;\,\,b} \right).\) Từ đó chọn đáp án đúng.

Hàm số \(y = f\left( x \right)\)  đồng biến trên \(\left( {a;\;b} \right) \Leftrightarrow f'\left( x \right) \ge 0\;\;\forall x \in \left( {a;\;b} \right).\)

Lời giải chi tiết:

Ta có: \(y =  - {x^3} + 3{x^2} + 2020\) \( \Rightarrow y' =  - 3{x^2} + 6x\)

Hàm số đã cho đồng biến \( \Leftrightarrow y' \ge 0\) \( \Leftrightarrow  - 3{x^2} + 6x \ge 0\)\( \Leftrightarrow 3x\left( {x - 2} \right) \le 0\)\( \Leftrightarrow 0 \le x \le 2\)

\( \Rightarrow \) Hàm số đã cho đồng biến trên \(\left[ {0;\,\,2} \right] \Rightarrow \left( {a;\,\,b} \right) \in \left[ {0;\,\,2} \right] \Rightarrow b - a \le 2.\)

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay