Câu hỏi

Cho hai điểm \(A\left( { - 4; - 1} \right),B\left( { - 2;1} \right)\). Điểm \(C\) trên đường thẳng \(\Delta :\,\,x - 2y + 3 = 0\) sao cho \({S_{ABC}} = 40\,\,\left( {dvdt} \right).\) Khi đó tung độ của điểm \(C\)  là:

  • A \(-10\) hoặc \(10\)                             
  • B \(-40\) hoặc \(40\)                          
  • C \(20\)
  • D \(50\)

Phương pháp giải:

B1: Ta có: \(C \in \Delta :\,\,x - 2y + 3 = 0 \Rightarrow C\left( {2c - 3;\,\,c} \right).\)

B2: Sử dụng công thức \(S = \frac{1}{2}.AB.d\left( {C,AB} \right).\)  Giải phương trình tìm \(c.\)

Lời giải chi tiết:

Ta có: \(C \in \Delta :\,\,x - 2y + 3 = 0 \Rightarrow C\left( {2c - 3;\,\,c} \right).\)

Phương trình đường thẳng \(AB\) là: \(\frac{{x + 4}}{{ - 2 + 4}} = \frac{{y + 1}}{{1 + 1}} \Leftrightarrow x + 4 = y + 1 \Leftrightarrow x - y + 3 = 0.\)

Có: \(\overrightarrow {AB}  = \left( {2;\,\,2} \right) \Rightarrow AB = 2\sqrt 2 .\)

\(\begin{array}{l} \Rightarrow {S_{ABC}} = \frac{1}{2}d\left( {C;\,\,AB} \right).AB\\ \Leftrightarrow 40 = \frac{1}{2}.\frac{{\left| {2c - 3 - c + 3} \right|}}{{\sqrt {1 + 1} }}.2\sqrt 2 \\ \Leftrightarrow \left| c \right| = 40 \Leftrightarrow \left[ \begin{array}{l}c = 40\\c =  - 40\end{array} \right..\end{array}\)

Chọn  B.


Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay