Giải SBT toán hình học và đại số 11 nâng cao
Bài 2, 3, 4: Hai đường thẳng vuông góc. Đường thẳng vuô..
Câu 52 trang 124 Sách bài tập Hình học 11 Nâng cao>
Giải bài tập Câu 52 trang 124 Sách bài tập Hình học 11 Nâng cao
Đề bài
Cho hình lập phương ABCD.A’B’C’D’ cạnh a.
a) Tính góc tạo bởi hai đường thẳng AC’ và A’B.
b) Gọi M, N, P lần lượt là trung điểm của các cạnh A’B’, BC, DD’. Chứng minh rằng AC’ vuông góc với mp(MNP).
Lời giải chi tiết

a) Ta có \(C'B' \bot \left( {ABB'A'} \right),B'A \bot A'B\) nên \(A'B \bot AC'\) (định lí ba đường vuông góc).
Vậy góc giữa AC’ và A’B bằng 90°.
b) Ta có
\(\eqalign{ & N{P^2} = N{C^2} + C{{\rm{D}}^2} + D{P^2} \cr & = {{{a^2}} \over 4} + {a^2} + {{{a^2}} \over 4} = {{3{{\rm{a}}^2}} \over 2} \cr} \)
Tương tự ta cũng có \(M{N^2} = M{P^2} = {{3{{\rm{a}}^2}} \over 2}\)
Vậy MNP là tam giác đều.
Mặt khác:
\(\eqalign{ & A{N^2} = A{P^2} = A{M^2} = {{5{{\rm{a}}^2}} \over 4} \cr & C'{N^2} + C'{P^2} = C'{M^2} = {{5{{\rm{a}}^2}} \over 4} \cr} \)
Từ đó \(AC' \bot \left( {MNP} \right)\).
Loigiaihay.com
Các bài khác cùng chuyên mục




