Giả sử một phép thử có không gian mẫu \(\Omega \) gồm hữu hạn các kết quả đồng khả năng và A là một biến cố. Xác suất của biến cố A, kí hiệu là P(A), được xác định bởi công thức
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\),
trong đó n(A) là số kết quả thuận lợi cho A và \(n\left( \Omega \right)\) là tổng số các kết quả có thể xảy ra.
Để tính xác suất của biến cố A, ta có thể thực hiện các bước sau:
Bước 1: Kiểm tra tính đồng khả năng đối với các kết quả có thể xảy ra của phép thử.
Bước 2: Đếm số kết quả có thể xảy ra, tức là đếm số phần tử của không gian mẫu \(\Omega \).
Bước 3: Đếm số kết quả thuận lợi cho biến cố A.
Bước 4: Lập tỉ số giữa số kết quả thuận lợi cho biến cố A và tổng số kết quả có thể xảy ra.
Ví dụ: Ba bạn Bảo, Châu, Dương được xếp ngẫu nhiên ngồi trên một hàng ghế có ba chỗ ngồi. Tính xác suất của các biến cố sau:
a) E: "Bảo không ngồi ngoài cùng bên phải";
b) F: “Châu và Dương không ngồi cạnh nhau”.
Lời giải:
Kí hiệu ba bạn Bảo, Châu, Dương lần lượt là B, C, D.
Vì việc xếp chỗ ngồi là ngẫu nhiên nên các kết quả có thể là đồng khả năng.
Ta liệt kê các kết quả có thể xảy ra:
• Bảo ngồi ngoài cùng bên trái: có 2 cách xếp là BCD và BDC.
• Bảo ngồi giữa: có 2 cách xếp là CBD và DBC.
• Bảo ngồi ngoài cùng bên phải: có 2 cách xếp là CDB và DCB.
Vậy không gian mẫu của phép thử là \(\Omega = \left\{ {BCD;{\rm{ }}BDC;{\rm{ }}CBD;{\rm{ }}DBC;{\rm{ }}CDB;{\rm{ }}DCB} \right\}.\)
Tập \(\Omega \) có 6 phần tử.
a) Có 4 kết quả thuận lợi cho biến cố E là BCD, BDC, CBD và DBC.
Vậy \(P\left( E \right) = \frac{4}{6} = \frac{2}{3}\).
b) Có 2 kết quả thuận lợi cho biến cố F là CBD và DBC.
Vậy \(P\left( F \right) = \frac{2}{6} = \frac{1}{3}\).
Các bài khác cùng chuyên mục