Đề bài

Trong Hình 73, khuôn cửa phía trên và mép cánh cửa phía dưới gợi nên hình ảnh hai đường thẳng \(a\) và \(b\) chéo nhau, hai bản lề của cánh cửa nằm trên đường thẳng \(c\).

Quan sát Hình 73 và cho biết đường thẳng \(c\) có vừa cắt, vừa vuông góc với cả hai đường thẳng \(a\) và \(b\) hay không.

Phương pháp giải

Quan sát hình ảnh và trả lời câu hỏi.

Lời giải của GV Loigiaihay.com

Đường thẳng \(c\) có vừa cắt, vừa vuông góc với cả hai đường thẳng \(a\) và \(b\).

Các bài tập cùng chuyên đề

Bài 1 :

Cho đường thẳng a vuông góc với mặt phẳng (P) và cắt (P) tại O. Cho đường thẳng b thuộc mặt phẳng (P). Hãy tìm mối quan hệ giữa khoảng cách giữa a, b và khoảng cách từ O đến b (H.7.88).

Xem lời giải >>
Bài 2 :

Cho hai đường thẳng chéo nhau a và b. Gọi (Q) là mặt phẳng chứa đường thẳng b và song song với a. Hình chiếu a' của a trên (Q) cắt b tại N. Gọi M là hình chiếu của N trên a (H.7.83).

a) Mặt phẳng chứa a và a' có vuông góc với (Q) hay không?

b) Đường thẳng MN có vuông góc với cả hai đường thẳng a và b hay không?

c) Nêu mối quan hệ của khoảng cách giữa a, (Q) và độ dài đoạn thẳng MN.

Xem lời giải >>
Bài 3 :

Một căn phòng có trần cao 3,2 m. Tỉnh khoảng cách giữa một đường thẳng \(a\) trên trần nhà và đường thẳng \(b\) trên sàn nhà.

Xem lời giải >>
Bài 4 :

Cho tứ diện \(OABC\) có ba cạnh \(OA,OB,OC\) đều bằng \(a\) và vuông góc từng đôi một. Tính khoảng cách giữa hai đường thẳng:

a) \(OA\) và \(BC\);

b) \(OB\) và \(AC\).

Xem lời giải >>
Bài 5 :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA = SB = SC = SD = a\sqrt 2 \). Gọi \(I,J\) lần lượt là trung điểm của \(AB\) và \(C{\rm{D}}\).

a) Chứng minh \(AB \bot \left( {SIJ} \right)\).

b) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(SC\).

Xem lời giải >>
Bài 6 :

Một cây cầu dành cho người đi bộ (Hình 22) có mặt sàn cầu cách mặt đường 3,5 m, khoảng cách từ đường thẳng \(a\) nằm trên tay vịn của cầu đến mặt sàn cầu là 0,8 m. Gọi \(b\) là đường thẳng kẻ theo tim đường. Tính khoảng cách giữa hai đường thẳng \(a\) và \(b\).

Xem lời giải >>
Bài 7 :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\) và \(SA = a\). Gọi \(M,N,P\) lần lượt là trung điểm của \(SB,SC\) và \(SD\). Tính khoảng cách giữa \(AM\) và \(NP\).

Xem lời giải >>
Bài 8 :

Cho hình lập phương \(ABCD.A'B'C'D'\) có \(AC' = \sqrt 3 \). Khoảng cách giữa hai đường thẳng \(AB'\) và \(BC'\) bằng

A. \(\frac{1}{3}\).                   

B. \(\frac{{\sqrt 3 }}{3}\).                          

C. \(\frac{{\sqrt 3 }}{2}\).                          

D. \(\frac{1}{2}\)

Xem lời giải >>
Bài 9 :

Cho hình chóp tam giác \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,SA \bot \left( {ABC} \right)\). Tính \(d\left( {SA,BC} \right)\).

Xem lời giải >>
Bài 10 :

Cho hình hộp chữ nhật \(MNPQ.M'N'P'Q'\) có \(MN = 2a,MQ = 3a,\) \(MM' = 4a\). Khoảng cách giữa hai đường thẳng \(NP\) và \(M'N'\) bằng:

A. \(2a\).                                  

B. \(3a\).                                  

C. \(4a\).                                  

D. \(5a\).

Xem lời giải >>
Bài 11 :

Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a, gọi O là giao điểm của AC và BD. Khoảng cách giữa hai đường thẳng AB và SD bằng

A. \(\frac{{a\sqrt 6 }}{3}\).

B. \(\frac{{a\sqrt 3 }}{2}\).

C. .\(\frac{{a\sqrt 6 }}{3}\).

D. \(\frac{{a\sqrt 6 }}{2}\).

Xem lời giải >>
Bài 12 :

Cho hình chóp S.ABCD có đáy là hình chữ nhật tâm O, AB = a, BC = \(a\sqrt 3 \), chân đường cao hình chóp là điểm H thuộc cạnh AD sao cho DH = 2AH,  góc giữa SD và mặt phẳng đáy bằng \(60^\circ \). Khoảng cách giữa hai đường thẳng SB và AC bằng bao nhiêu?

Xem lời giải >>
Bài 13 :

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’. Tính khoảng cách giữa hai đường thẳng MN và B’D’.

Xem lời giải >>
Bài 14 :

Cho hình tứ diện đều ABCD có cạnh bằng \(\sqrt {11} \). Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.

Xem lời giải >>
Bài 15 :

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = 2a,BC = a\), mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi E là trung điểm của CD. Tính theo a khoảng cách giữa hai đường thẳng BE và SC.

A. \(\frac{{a\sqrt {30} }}{{10}}\)

B. \(\frac{{a\sqrt 3 }}{2}\)

C. \(\frac{{a\sqrt {15} }}{5}\)

D. a

Xem lời giải >>
Bài 16 :

Cho hình chóp S. ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho \(HA = 2HB\). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng \({60^0}\). Tính khoảng cách giữa hai đường thẳng SA và BC theo a.

Xem lời giải >>
Bài 17 :

Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a\), cạnh bên \(SA\) bằng \(a\sqrt 2 \). Khoảng cách giữa hai đường thẳng \(BD\) và \(SC\) là

A. \(\frac{{a\sqrt 6 }}{4}\).

B. \(\frac{{a\sqrt 6 }}{3}\).

C. \(\frac{{a\sqrt 6 }}{2}\).

D. \(\frac{{a\sqrt 3 }}{2}\).

Xem lời giải >>
Bài 18 :

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh bằng \(a\) và \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng

A. \(\frac{{a\sqrt 2 }}{2}\).

B. \(\frac{{a\sqrt 3 }}{4}\).

C. \(\frac{{a\sqrt 6 }}{2}\).

D. \(\frac{{a\sqrt 3 }}{2}\).

Xem lời giải >>
Bài 19 :

Cho hình lăng trụ đứng ABC.A'B'C' có AB = 5, BC = 6, CA = 7. Khoảng cách giữa hai đường thẳng AA' và BC bằng bao nhiêu? (làm tròn kết quả đến hàng phần mười).

Xem lời giải >>
Bài 20 :

Cho hình chóp tứ giác đều S.ABCD, có cạnh đáy bằng 2, cạnh bên bằng \(2\sqrt 2 \). Tính khoảng cách giữa hai đường thẳng AB và SD (kết quả làm tròn đến hàng phần mười).

Xem lời giải >>
Bài 21 :

Cho tứ diện đều ABCD có cạnh bằng 2. Khoảng cách giữa hai đường thẳng AB và CD bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

Xem lời giải >>
Bài 22 :

Cho hình chóp S.ABCD có \(SA \bot (ABCD)\), đáy ABCD là hình chữ nhật và AD = 6. Góc giữa cạnh bên SD và mặt đáy bằng \({30^o}\). Khoảng cách giữa hai đường thẳng AB và SD bằng bao nhiêu?

Xem lời giải >>