Đề bài

Xét một điểm M trên cạnh huyền của tam giác ABC vuông cân tại A. Gọi N và P lần lượt là hình chiếu vuông góc của M trên các cạnh AB và AC.

a) Hỏi tứ giác MPAN là hình gì?

b) Hỏi M ở vị trí nào thì đoạn thẳng NP có độ dài ngắn nhất? Vì sao?

Phương pháp giải

a) Xét tứ giác APMN có 3 góc vuông nên là hình chữ nhật.

b) Sử dụng tính chất của hình chữ nhật.

Lời giải của GV Loigiaihay.com

a) Tứ giác MPAN có: \(\widehat {NAP} = \widehat {APM} = \widehat {MNA} = {90^o}\)

Do đó tứ giác MPAN là hình chữ nhật.

b) Vì tứ giác MPAN là hình chữ nhật có hai đường chéo AM và NP nên AM = NP.

Để đoạn thẳng NP có độ dài ngắn nhất thì AM có độ dài ngắn nhất.

Khi đó, MA là đường vuông góc kẻ từ A đến đoạn thẳng BC hay AM là đường cao của tam giác ABC.

Mà tam giác ABC vuông cân tại A nên AM cũng là đường trung tuyến.

Do đó M là trung điểm của BC.

Vậy M là trung điểm của đoạn thẳng BC thì đoạn thẳng NP có độ dài ngắn nhất.

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác ABC cân tại A; M là một điểm thuộc đường thẳng BC, B ở giữa M và C. Gọi E và K lần lượt là chân đường vuông góc hạ từ M và từ B xuống AC, còn N, D lần lượt là chân đường vuông góc hạ từ B xuống ME và từ M xuống AB. (H.3.60)

Chứng minh rằng:

a) Tứ giác BKEN là hình chữ nhật

b) BK và NE cùng bằng hiệu khoảng cách từ M đến AC và AB (dù M thay đổi trên đường thẳng MC miễn là B nằm giữa M và C)

Xem lời giải >>
Bài 2 :

Cho tam giác ABC vuông tại A có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh tứ giác ABCD là hình chữ nhật và \(AM = \dfrac{1}{2}BC\).

Xem lời giải >>
Bài 3 :

Cho hình chữ nhật ABCD có điểm E nằm trên cạnh CD sao cho \(\widehat {A{\rm{E}}B} = {78^o};\widehat {EBC} = {39^o}\). Tính số đo của \(\widehat {BEC}\)\(\widehat {E{\rm{A}}B}\).

Xem lời giải >>
Bài 4 :

Hình chữ nhật ABCD có O là giao điểm của hai đường chéo AC và BD. Hãy tìm độ dài thích hợp cho các ô \(?\) trong bảng dưới đây:

Xem lời giải >>
Bài 5 :

Xét một điểm M trên cạnh huyền của tam giác ABC vuông cân tại A. Gọi N và P lần lượt là hình chiếu vuông góc của M trên các cạnh AB và AC.

a) Hỏi tứ giác MPAN là hình gì?

b) Hỏi M ở vị trí nào thì đoạn thẳng NP có độ dài ngắn nhất? Vì sao?

Xem lời giải >>
Bài 6 :

Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE.

a) Chứng minh AHBD, AHCE, BCED là những hình chữ nhật.

b) Tại sao giao điểm của BE và CD là trung điểm của AH?

c) Giải thích tại sao \(DH = HE,BE = CD\).

Xem lời giải >>
Bài 7 :

Cho \(\Delta ABC\) vuông tại A (AB < AC) có I là trung điểm BC. Gọi K là điểm đối xứng của A qua I.

a) Chứng minh ABKC là hình chữ nhật.

b) Gọi D, E lần lượt là trung điểm AB và BK. Chứng minh rằng ID \( \bot \)AB và \(DI = \frac{1}{2}BK\)

c) Qua I vẽ đường thẳng vuông góc với BI tại I và cắt BA, BK lần lượt tại F và G. Gọi H, J lần lượt là trung điểm của FI và IG. Chứng minh rằng DH // EJ.

Xem lời giải >>