Bài 6 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo


Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 10. \(M\) là điểm trên \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) song song với \(AB\) và \(C{\rm{D}}\), cắt hình chóp theo một tứ giác có diện tích là

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 10. \(M\) là điểm trên \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \(\left( \alpha  \right)\) đi qua \(M\) song song với \(AB\) và \(C{\rm{D}}\), cắt hình chóp theo một tứ giác có diện tích là

A. \(\frac{{400}}{9}\).

B. \(\frac{{200}}{3}\).

C. \(\frac{{40}}{9}\).

D. \(\frac{{200}}{9}\).

Phương pháp giải - Xem chi tiết

Sử dụng tỉ số diện tích.

Lời giải chi tiết

Qua \(M\) dựng đường thẳng song song với \(AB\), cắt \(SB\) tại \(N\).

Qua \(N\) dựng đường thẳng song song với \(BC\), cắt \(SC\) tại \(P\).

Qua \(M\) dựng đường thẳng song song với \(AD\), cắt \(SD\) tại \(Q\).

Ta có:

\(\left. \begin{array}{l}MN\parallel AB\\AB \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MQ\parallel AD\\AD \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MQ\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MN\parallel \left( {ABCD} \right)\\MQ\parallel \left( {ABCD} \right)\\MN,MQ \subset \left( \alpha  \right)\end{array} \right\} \Rightarrow \left( {MNPQ} \right)\parallel \left( {ABCD} \right)\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{{MN}}{{AB}}} \right)^2}\)

Ta có: \({S_{ABC{\rm{D}}}} = A{B^2} = {10^2} = 100\)

\(MN\parallel AB \Rightarrow \frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3}\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9} \Rightarrow {S_{MNPQ}} = \frac{4}{9}{S_{ABC{\rm{D}}}} = \frac{4}{9}.100 = \frac{{400}}{9}\)

Chọn A.


Bình chọn:
4.2 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí