Bài 3 trang 7 SGK Hình học 11


Trong mặt phẳng tọa độ Oxy cho vectơ v = (-1;2), hai điểm A(3;5), B( -1; 1) và đường thẳng d có phương trình x-2y+3=0.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trong mặt phẳng tọa độ \(Oxy\) cho vectơ \(v = ( -1;2)\), hai điểm \(A(3;5)\), \(B( -1; 1)\) và đường thẳng \(d\) có phương trình \(x-2y+3=0\).

LG a

Tìm tọa độ của các điểm \(A', B'\) theo thứ tự là ảnh của \(A, B\) qua phép tịnh tiến theo \(\overrightarrow{v}\)

Phương pháp giải:

Sử dụng biểu thức tọa độ của phép tịnh tiến: Phép tịnh tiến theo vector \(\overrightarrow v \left( {a;b} \right)\) biến điểm \(M(x;y)\) thành điểm \(M'(x';y')\). Khi đó \(\overrightarrow {MM'} = \overrightarrow v \Leftrightarrow \left\{ \matrix{x' - x = a \hfill \cr y' - y = b \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{x' = x + a \hfill \cr y' = y + b \hfill \cr} \right.\)

Lời giải chi tiết:

Giả sử \(A'=(x'; y')\). Khi đó

\(T_{\vec{v}} (A) = A'\)

\( \Leftrightarrow \overrightarrow {AA'} = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}
x' - 3 = - 1\\
y' - 5 = 2
\end{array} \right.\)

⇔ \(\left\{\begin{matrix} {x}'= 3 - 1 = 2\\ {y}'= 5 + 2 = 7 \end{matrix}\right.\)  \(\Rightarrow A' = (2;7)\)

\({T_{\overrightarrow v }}\left( B \right) = B' \) \(\Leftrightarrow \overrightarrow {BB'} = \overrightarrow v \) \( \Leftrightarrow \left\{ \begin{array}{l}
x' - \left( { - 1} \right) = - 1\\
y' - 1 = 2
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
x' = - 1 - 1\\
y' = 1 + 2
\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}
x' = - 2\\
y' = 3
\end{array} \right.\) \(  \Rightarrow B'\left( { - 2;3} \right)\)

LG b

Tìm tọa độ của điểm \(C\) sao cho \(A\) là ảnh của \(C\) qua phép tịnh tiến theo \(\overrightarrow{v}\)

Lời giải chi tiết:

Ta có:

\({T_{\overrightarrow v }}\left( C \right) = A\) \( \Leftrightarrow \overrightarrow {CA} = \overrightarrow v \) \(\Leftrightarrow \left\{ \begin{array}{l}
{x_A} - {x_C} = - 1\\
{y_A} - {y_C} = 2
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
{x_C} = {x_A} + 1\\
{y_C} = {y_A} - 2
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
{x_C} = 3 + 1 = 4\\
{y_C} = 5 - 2 = 3
\end{array} \right. \) \(\Rightarrow C\left( {4;3} \right)\)

Cách khác

Ta có \(A = T_{\vec{v}} (C)\) ⇔ \(C= T_{-\vec{v}} (A) \) (với \( - \overrightarrow v  = \left( {1; - 2} \right)\))

\( \Rightarrow \left\{ \matrix{x' = 3 + 1 = 4 \hfill \cr y' = 5 - 2 = 3 \hfill \cr} \right. \Rightarrow C\left( {4;3} \right)\)

LG c

Tìm phương trình của đường thẳng \(d'\) là ảnh của \(d\) qua phép tịnh tiến theo \(\overrightarrow{v}\)

Phương pháp giải:

Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

Lời giải chi tiết:

Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi \(M(x;y)\) bất kì thuộc \(d\), \(M' = T_{\vec{v}}(M) =(x'; y')\) nên \(M'\) thuộc \(d'.\)

Khi đó 

\(M' = T_{\vec{v}}(M)\) \(⇔  \left\{ \matrix{x' = x - 1 \hfill \cr y' = y + 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{x = x' + 1 \hfill \cr y = y' - 2 \hfill \cr} \right.\)

Ta có \(M ∈ d ⇔ x-2y +3 = 0\)\( ⇔ (x'+1) - 2(y'-2)+3=0 \) \(⇔ x' -2y' +8=0 \)

\(⇔ M' ∈ d'\) có phương trình \(x-2y+8=0\).

Vậy \(T_{\vec{v}}(d) = d':\,\, x-2y+8=0\)

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(T_{\vec{v}}(d) =d'\).

Khi đó \(d'\) song song hoặc trùng với \(d\) nên phương trình của nó có dạng \(x-2y+C=0\).

Lấy một điểm thuộc \(d\) chẳng hạn \(B(-1;1)\), khi đó gọi \(B' = {T_{\overrightarrow v }}\left( B \right) \Rightarrow \left\{ \matrix{x' = - 1 - 1 = - 2 \hfill \cr y' = 1 + 2 = 3 \hfill \cr} \right. \) \(\Rightarrow B'\left( { - 2;3} \right) \in d'\)

\( \Rightarrow  - 2 - 2.3 + C = 0 \Leftrightarrow C = 8\)

Vậy phương trình đường thẳng \(\left( {d'} \right):\,\,x - 2y + 8 = 0\).

 Loigiaihay.com


Bình chọn:
4.2 trên 87 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí