Bài 2 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho là cấp số cộng với số hạng đầu và công sai . Viết công thức số hạng tổng quát .
Đề bài
Cho là cấp số cộng với số hạng đầu và công sai . Viết công thức số hạng tổng quát .
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số cộng có số hạng đầu và công sai thì số hạng tổng quát là: .
Lời giải chi tiết
Ta có:


- Bài 3 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 4 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 5 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 6 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
- Bài 7 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Chân trời sáng tạo - Xem ngay
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Các bài khác cùng chuyên mục
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo
- Lý thuyết Đường thẳng vuông góc với mặt phẳng - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố hợp và quy tắc cộng xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Biến cố giao và quy tắc nhân xác suất - Toán 11 Chân trời sáng tạo
- Lý thuyết Góc giữa đường thẳng và mặt phẳng. Góc nhị diện - Toán 11 Chân trời sáng tạo
- Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo
- Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Chân trời sáng tạo