Bài 2 trang 163 SGK Đại số và Giải tích 11


Tìm đạo hàm của các hàm số sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm đạo hàm của các hàm số sau:

LG a

\(y = x^5- 4 x^3+ 2x - 3\)

Phương pháp giải:

Sử dụng công thức tính đạo hàm \(\left( {{x^n}} \right)' = n{x^{n - 1}}\).

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( {{x^5} - 4{x^3} + 2x - 3} \right)'\\
= \left( {{x^5}} \right)' - \left( {4{x^3}} \right)' + \left( {2x} \right)' - \left( 3 \right)'\\
= \left( {{x^5}} \right)' - 4.\left( {{x^3}} \right)' + 2.\left( x \right)' - 0\\
= 5{x^4} - 4.3{x^2} + 2\\
= 5{x^4} - 12{x^2} + 2
\end{array}\)

LG b

\(y =  \dfrac{1}{4} -  \dfrac{1}{3}x  + x^2 - 0,5x^4\)

Phương pháp giải:

Sử dụng công thức tính đạo hàm \(\left( {{x^n}} \right)' = n{x^{n - 1}}\).

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( {\dfrac{1}{4} - \dfrac{1}{3}x + {x^2} - 0,5{x^4}} \right)'\\
= \left( {\dfrac{1}{4}} \right)' - \left( {\dfrac{1}{3}x} \right)' + \left( {{x^2}} \right)' - \left( {0,5{x^4}} \right)'\\
= 0 - \dfrac{1}{3}\left( x \right)' + \left( {{x^2}} \right)' - 0,5\left( {{x^4}} \right)'\\
= - \dfrac{1}{3} + 2x - 0,5.4{x^3}\\
= - \dfrac{1}{3} + 2x - 2{x^3}
\end{array}\)

LG c

\(y =  \dfrac{x^{4}}{2}\) - \( \dfrac{2x^{3}}{3}\) + \( \dfrac{4x^{2}}{5} - 1\)

Phương pháp giải:

Sử dụng công thức tính đạo hàm \(\left( {{x^n}} \right)' = n{x^{n - 1}}\).

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( {\dfrac{{{x^4}}}{2} - \dfrac{{2{x^3}}}{3} + \dfrac{{4{x^2}}}{5} - 1} \right)'\\
= \left( {\dfrac{{{x^4}}}{2}} \right)' - \left( {\dfrac{{2{x^3}}}{3}} \right)' + \left( {\dfrac{{4{x^2}}}{5}} \right)' - \left( 1 \right)'\\
= \dfrac{1}{2}\left( {{x^4}} \right)' - \dfrac{2}{3}\left( {{x^3}} \right)' + \dfrac{4}{5}\left( {{x^2}} \right)' - 0\\
= \dfrac{1}{2}.4{x^3} - \dfrac{2}{3}.3{x^2} + \dfrac{4}{5}.2x\\
= 2{x^3} - 2{x^2} + \dfrac{8}{5}x
\end{array}\)

LG d

\(y = 3x^5(8 - 3x^2)\)

Phương pháp giải:

Sử dụng công thức tính đạo hàm \(\left( {{x^n}} \right)' = n{x^{n - 1}}\).

Lời giải chi tiết:

\(\begin{array}{l}
y = 3{x^5}\left( {8 - 3{x^2}} \right)\\
= 24{x^5} - 9{x^7}\\
\Rightarrow y' = \left( {24{x^5} - 9{x^7}} \right)'\\
= 24.\left( {{x^5}} \right)' - 9.\left( {{x^7}} \right)'\\
= 24.5{x^4} - 9.7{x^6}\\
= 120{x^4} - 63{x^6}
\end{array}\)

Cách khác:

\(\begin{array}{l}
y' = \left[ {3{x^5}\left( {8 - 3{x^2}} \right)} \right]'\\
= \left( {3{x^5}} \right)'\left( {8 - 3{x^2}} \right) + 3{x^5}\left( {8 - 3{x^2}} \right)'\\
= 3.\left( {{x^5}} \right)'\left( {8 - 3{x^2}} \right) + 3{x^5}\left[ {\left( 8 \right)' - \left( {3{x^2}} \right)'} \right]\\
= 3.5{x^4}\left( {8 - 3{x^2}} \right) + 3{x^5}\left( {0 - 3.2x} \right)\\
= 120{x^4} - 45{x^6} - 18{x^6}\\
= 120{x^4} - 63{x^6}
\end{array}\)

Loigiaihay.com


Bình chọn:
4.3 trên 49 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí