Bài 1 trang 83 SGK Hình học 10


Tìm tâm và bán kính của các đường tròn sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tâm và bán kính của các đường tròn sau:

LG a

\({x^2} + {\rm{ }}{y^2} - 2x-2y - 2{\rm{ }} = 0\)

Phương pháp giải:

Cho phương trình đường tròn: \({x^2} + {y^2} - 2ax - 2by + c = 0.\) Khi đó đường tròn có tâm \(I(a;\, b)\) và bán kính: \(R = \sqrt {{a^2} + {b^2} - c} .\)

Lời giải chi tiết:

Ta có : \(-2a = -2 \Rightarrow a = 1\)

           \(-2b = -2 \Rightarrow b = 1\)

\(\Rightarrow \) Tâm của đường tròn là: \(I(1; 1)\)

Lại có: \({R^2} = {a^2} + {b^2} - c \)\(= {1^2} + {1^2} - ( - 2) = 4 \Rightarrow R = \sqrt 4  = 2\)

Cách khác:

\(\begin{array}{l}
{x^2} + {y^2} - 2x - 2y - 2 = 0\\
\Leftrightarrow \left( {{x^2} - 2x + 1} \right) + \left( {{y^2} - 2y + 1} \right) = 4\\
\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = {2^2}
\end{array}\)

Vậy đường tròn có tâm \(I(1;1)\) bán kính \(R=2\).

LG b

\(16{x^2} + {\rm{ }}16{y^2} + {\rm{ }}16x{\rm{ }}-{\rm{ }}8y{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)

Lời giải chi tiết:

\(\displaystyle 16{x^2} + {\rm{ }}16{y^2} + {\rm{ }}16x{\rm{ }}-{\rm{ }}8y{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)

\(\displaystyle \Leftrightarrow {x^2} + {y^2} + x - {1 \over 2}y - {{11} \over {16}} = 0\)

\(\displaystyle \eqalign{
& - 2a = 1 \Rightarrow a = - {1 \over 2} \cr 
& - 2b = - {1 \over 2} \Rightarrow b = {1 \over 4} \cr 
& \Rightarrow I\left( { - {1 \over 2};{1 \over 4}} \right) \cr} \)

\(\displaystyle {R^2} = {a^2} + {b^2} - c \)\(\displaystyle = {\left( { - {1 \over 2}} \right)^2} + {\left( {{1 \over 4}} \right)^2} - \left( { - {{11} \over {16}}} \right) = 1\)\(\displaystyle \Rightarrow R = \sqrt 1  = 1\)

Cách khác:

\(\begin{array}{l}
16{x^2} + 16{y^2} + 16x - 8y - 11 = 0\\
\Leftrightarrow {x^2} + {y^2} + x - \dfrac{1}{2}y - \dfrac{{11}}{{16}} = 0\\
\Leftrightarrow \left( {{x^2} + x + \dfrac{1}{4}} \right) + \left( {{y^2} - \dfrac{1}{2}y + \dfrac{1}{{16}}} \right) = 1\\
\Leftrightarrow {\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {y - \dfrac{1}{4}} \right)^2} = {1^2}
\end{array}\)

Do đó đường tròn có tâm \(I\left( { - \dfrac{1}{2};\dfrac{1}{4}} \right)\) bán kính \(R=1\).

LG c

\({x^{2}} + {\rm{ }}{y^{2}} - {\rm{ }}4x{\rm{ }} + {\rm{ }}6y{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0.\)

Lời giải chi tiết:

\(\eqalign{
& - 2a = - 4 \Rightarrow a = 2 \cr 
& - 2b = 6 \Rightarrow b = - 3 \cr 
& \Rightarrow I\left( {2; - 3} \right) \cr} \)

\({R^2} = {a^2} + {b^2} - c \)\(= {2^2} + {\left( { - 3} \right)^2} - \left( { - 3} \right) = 16 \)

\(\Rightarrow R = \sqrt {16}  = 4\)

Cách khác:

\(\begin{array}{l}
{x^2} + {y^2} - 4x + 6y - 3 = 0\\
\Leftrightarrow \left( {{x^2} - 4x + 4} \right) + \left( {{y^2} + 6y + 9} \right) = 16\\
\Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = {4^2}
\end{array}\)

Do đó đường tròn có tâm \(I(2;-3)\) bán kính \(R=4\).

Loigiaihay.com


Bình chọn:
4.4 trên 48 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!