Bài 1 trang 132 SGK Đại số và Giải tích 11


Dùng định nghĩa tìm các giới hạn sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Dùng định nghĩa tìm các giới hạn sau:

LG a

\(\underset{x\rightarrow 4}{\lim}\dfrac{x+1}{3x - 2}\);

Phương pháp giải:

\(\underset{x\rightarrow a}{\lim}f(x)), f(x)\) xác định trên \(D\)

+) Lấy dãy \((x_n)\) bất kì, \(x_n \in D\): \(\lim {x_n} = 4\) 

+) Tính \(\lim f({x_n})\).

Lời giải chi tiết:

Hàm số \(f(x) = \dfrac{x +1}{3x - 2}\) xác định trên \(D=\mathbb R\backslash \left\{ {{2 \over 3}} \right\}\) và ta có \(x = 4 \in D\)

Giả sử \((x_n)\) là dãy số bất kì và \(x_n ∈ D\); \(x_n≠ 4\) và \(x_n→ 4\) khi \(n \to  + \infty \) hay \(\lim {x_n} = 4\)

Ta có \(\lim f(x_n) = \lim \dfrac{x_{n} +1}{3x_{n} - 2} \) \( = \dfrac{{\lim {x_n} + 1}}{{3\lim {x_n} - 2}}\) \(= \dfrac{4 + 1}{3. 4 - 2} = \dfrac{1}{2}\)

Vậy \(\underset{x\rightarrow 4}{\lim}\) \(\dfrac{x +1}{3x - 2}\) = \(\dfrac{1}{2}\).

LG b

\(\underset{x \rightarrow +\infty }{\lim}\dfrac{2-5x^{2}}{x^{2}+3}\).

Phương pháp giải:

\(\underset{x \rightarrow +\infty }{\lim}f(x)\).

+) Lấy dãy \((x_n)\) bất kì: \(\lim {x_n} =  + \infty \)

+) Tính \(\lim f({x_n})\).

Lời giải chi tiết:

Hàm số \(f(x)\) = \(\dfrac{2-5x^{2}}{x^{2}+3}\) xác định trên \(\mathbb R\).

Giả sử \((x_n)\) là dãy số bất kì và \(x_n→ +∞\) khi \(n \to  + \infty \) hay \(\lim {x_n} =  + \infty \)

\( \Rightarrow \lim \dfrac{1}{{x_n^2}} = 0\)

Ta có \(\lim f(x_n) = \lim \dfrac{2-5x^{2}_{n}}{x^{2}_{n}+3}\) \(= \lim \dfrac{{x_n^2\left( {\dfrac{2}{{x_n^2}} - 5} \right)}}{{x_n^2\left( {1 + \dfrac{3}{{x_n^2}}} \right)}}\) \(= \lim \dfrac{\dfrac{2}{x^{2}_{n}}-5}{1+\dfrac{3}{x^{2}_{n}}} \) \( = \dfrac{{\lim \dfrac{2}{{x_n^2}} - 5}}{{1 + \lim \dfrac{3}{{x_n^2}}}} = \dfrac{{0 - 5}}{{1 + 0}}\) \(= -5\)

Vậy \(\underset{x\rightarrow +\infty }{\lim}\) \(\dfrac{2-5x^{2}}{x^{2}+3} = -5\).

 Loigiaihay.com


Bình chọn:
4 trên 44 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí