Lý thuyết hệ tọa độ trong không gian>
Hệ tọa độ Đề-các trong không gian.
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
1. Hệ tọa độ trong không gian
Trong không gian cho ba trục tọa độ chung gốc \(O\), đôi một vuông góc với nhau \(x'Ox ; y'Oy ; z'Oz\). Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Đề-các vuông góc \(Oxyz\); \(O\) là gốc tọa tọa độ. Giả sử \(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\) lần lượt là các vectơ đơn vị trên các trục \(x'Ox, y'Oy, z'Oz\) (h. 52)
Với điểm \(M\) thuộc không gian \(Oxyz\) thì tồn tại duy nhất bộ số \((x ; y ; z)\) để
\(\overrightarrow{OM}= x.\overrightarrow{i}+y.\overrightarrow{j}+z.\overrightarrow{k}\),
bộ \((x ; y ; z)\) được gọi là tọa độ của điểm \(M(x ; y ; z)\).
Trong không gian Oxyz cho vectơ \(\overrightarrow{a}\), khi đó \(\overrightarrow{a}= a_{1}\overrightarrow{i}+a_{2}\overrightarrow{j}+a_{3}\overrightarrow{k}\)
Ta viết \(\overrightarrow{a}\)\(({a_1};{a_2};{a_3})\) và nói \(\overrightarrow{a}\) có tọa độ \(({a_1};{a_2};{a_3})\) .
2. Biểu thức tọa độ của các phép toán vectơ
Giả sử \(\overrightarrow{a}\)= \(({a_1};{a_2};{a_3})\) và \(\overrightarrow{b}\) = \(({b_1};{b_2};{b_3})\), thì:
\(\overrightarrow{a}+\overrightarrow{b}\) \(= ({a_{1\;}} + {b_1};{a_2}\; + {\rm{ }}{b_2};{\rm{ }}{a_3} + {b_3}\;).\)
\(\overrightarrow{a} - \overrightarrow{b}\) \( = ({a_{1\;}} - {b_1};{a_2}\; - {\rm{ }}{b_2};{\rm{ }}{a_3} - {b_3}\;).\)
\( k.\overrightarrow{a}\) \( = (k{a_1};k{a_2};k{a_3}).\)
3. Tích vô hướng
Cho \(\overrightarrow{a}\)\(({a_1};{a_2};{a_3})\) và \(\overrightarrow{b}\) \(({b_1};{b_2};{b_3})\) thì tích vô hướng \(\overrightarrow{a}\).\(\overrightarrow{b}\) \( = \;{a_1}.{b_1}\; + {\rm{ }}{a_2}.{b_2}\; + {\rm{ }}{a_3}.{b_3}\)
Ta có: \(|\overrightarrow{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}.\)
Đặt \(\varphi =\left (\widehat{\overrightarrow{a},\overrightarrow{b}} \right )\) , 0 ≤ \(\varphi\) ≤ 1800 thì \(cos\varphi =\dfrac{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3} }{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}\) (với \(\overrightarrow{a}\) ≠ \(\overrightarrow{0}\), \(\overrightarrow{b}\)≠ \(\overrightarrow{0}\))
4. Phương trình mặt cầu
Trong không gian \(Oxyz\), mặt cầu \((S)\) tâm \(I(a ; b ; c)\) bán kính \(R\) có phương trình chính tắc \[{\left( {x - a} \right)^{2\;}} + {\left( {y-b} \right)^2} + {\left( {z-c} \right)^2}\; = {R^2}\]
Mặt cầu có phương trình tổng quát \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) có tâm \(I\left( { - a; - b; - c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \)


- Trả lời câu hỏi 1 trang 63 SGK Hình học 12
- Trả lời câu hỏi 2 trang 64 SGK Hình học 12
- Trả lời câu hỏi 3 trang 66 SGK Hình học 12
- Trả lời câu hỏi 4 trang 67 SGK Hình học 12
- Giải bài 1 trang 68 SGK Hình học 12
>> Xem thêm