Câu hỏi

Cho hình chóp \(S.ABCD\) có tất cả các cạnh đều bằng \(a\). Tan của góc giữa mặt bên và mặt đáy bằng :

  • A \(\sqrt 2 \)
  • B \(\dfrac{{\sqrt 2 }}{2}\)
  • C \(\dfrac{{\sqrt 3 }}{2}\)
  • D \(\sqrt 3 \)

Phương pháp giải:

+) Xác định góc giữa mặt bên và đáy là góc giữa hai đường thẳng lần lượt thuộc 2 mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng đó.

+) Tính tan của góc xác định được.

Lời giải chi tiết:

Gọi \(O = AC \cap BD\). Do \(S.ABCD\) là chóp đều \( \Rightarrow SO \bot \left( {ABCD} \right)\).

Gọi \(M\) là trung điểm của \(CD\) ta có: \(OM\) là đường trung bình của tam giác \(BCD \Rightarrow OM//BC\).

\( \Rightarrow OM \bot CD\).

Ta có: \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\,\,\left( {SO \bot \left( {ABCD} \right)} \right)\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\).

\(\left\{ \begin{array}{l}\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\\left( {SCD} \right) \supset SM \bot CD\\\left( {ABCD} \right) \supset OM \bot CD\end{array} \right. \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \angle \left( {SM;OM} \right) = \angle SMO\).

Ta có \(OM = \dfrac{a}{2}\). \(\Delta SCD\) đều cạnh \(a \Rightarrow SM = \dfrac{{a\sqrt 3 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông \(SOM\) ta có: \(SO = \sqrt {S{M^2} - O{M^2}}  = \sqrt {\dfrac{{3{a^2}}}{4} - \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt 2 }}{2}\).

\( \Rightarrow \tan \angle SMO = \dfrac{{SO}}{{OM}} = \dfrac{{\dfrac{{a\sqrt 2 }}{2}}}{{\dfrac{a}{2}}} = \sqrt 2 \).

Chọn A.


Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay