Câu hỏi
Cho \(\int\limits_0^1 {f\left( x \right)dx} = 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]dx} \) bằng
- A \( - 3\)
- B \(12\)
- C \( - 8\)
- D \(1\)
Phương pháp giải:
Sử dụng tính chất tích phân \(\int\limits_a^b {\left[ {\alpha f\left( x \right) \pm \beta g\left( x \right)} \right]dx} = \alpha \int\limits_a^b {f\left( x \right)dx} \pm \beta \int\limits_a^b {g\left( x \right)dx} \)
Lời giải chi tiết:
Ta có: \(\int\limits_0^1 {\left[ {f\left( x \right) - 2g\left( x \right)} \right]dx} = \int\limits_0^1 {f\left( x \right)dx} - 2\int\limits_0^1 {g\left( x \right)dx} = 2 - 2.5 = - 8\)
CHỌN C


