Câu hỏi
Xét các khẳng định sau
i) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right) > 0\) \(\forall x \in \mathbb{R}\) thị hàm số đồng biến trên \(\mathbb{R}\).
ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right) \ge 0\) \(\forall x \in \mathbb{R}\)và đẳng thức chỉ xảy ra tại hữu hạn điểm trên \(\mathbb{R}\) thì hàm số đồng biến trên \(\mathbb{R}\).
ii) Nếu hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồng biến trên \(\mathbb{R}\) thì \(f'\left( x \right) \ge 0\) \(\forall x \in \mathbb{R}\) và đẳng thức chỉ xảy ra tại hữu hạn điểm trên \(\mathbb{R}\).
iv) Nếu hàm số \(y = f\left( x \right)\) thỏa mãn \(f'\left( x \right) \ge 0\) \(\forall x \in \mathbb{R}\) và đẳng thức xảy ra tại vô hạn điểm trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) không đồng biến trên \(\mathbb{R}\).
Số khẳng định đúng là:
- A \(4\)
- B \(2\)
- C \(3\)
- D \(1\)
Phương pháp giải:
Dựa vào định nghĩa và các định lí về tính đơn điệu của hàm số.
Lời giải chi tiết:
Khẳng định i, ii đúng. Khẳng định iii, iv sai.
Chọn B.