Câu hỏi

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có đồ thị của hàm\(y = f'\left( x \right)\) như hình vẽ. Xét hàm số \(g(x) = f\left( {{x^2} - 2} \right)\). Mệnh đề nào dưới đây sai ?

  • A Hàm số \(g(x)\) nghịch  biến trên \(\left( {0;2} \right).\)
  • B Hàm số \(g(x)\) đồng biến trên \(\left( {2; + \infty } \right).\)
  • C Hàm số\(g(x)\)nghịch biến trên \(\left( { - 1;0} \right).\)
  • D Hàm số \(g(x)\) nghịch  biến trên \(\left( { - \infty ; - 2} \right).\)

Phương pháp giải:

- Tính đạo hàm của hàm số \(g\left( x \right)\).

- Lập bảng xét dấu của \(g'\left( x \right)\) và suy ra các khoảng đơn điệu của hàm số.

Lời giải chi tiết:

Ta có: \(g'\left( x \right) = 2x\,f'\left( {{x^2} - 2} \right)\)

Cho \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - 2 =  - 1\\{x^2} - 2 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm 1\\x =  \pm 2\end{array} \right.\), trong đó \(x =  \pm 1\) là nghiệm bội 2.

Bảng xét dấu \(g'\left( x \right)\):

Vậy hàm số \(g\left( x \right)\) nghịch biến trên \(\left( { - 1;0} \right)\) là phát biểu sai.

Chọn C.


Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay